Supported Indicators
Hurst Exponent
Introduction
This indicator represents the Hurst Exponent indicator, which is used to measure the long-term memory of a time series. - H less than 0.5: Mean-reverting; high values followed by low ones, stronger as H approaches 0. - H equal to 0.5: Random walk (geometric). - H greater than 0.5: Trending; high values followed by higher ones, stronger as H approaches 1.
To view the implementation of this indicator, see the LEAN GitHub repository.
Using HE Indicator
To create an automatic indicators for HurstExponent
, call the HE
helper method from the QCAlgorithm
class. The HE
method creates a HurstExponent
object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initialize
initialize
method.
public class HurstExponentAlgorithm : QCAlgorithm { private Symbol _symbol; private HurstExponent _he; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _he = HE(_symbol, 32); } public override void OnData(Slice data) { if (_he.IsReady) { // The current value of _he is represented by itself (_he) // or _he.Current.Value Plot("HurstExponent", "he", _he); } } }
class HurstExponentAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._he = self.he(self._symbol, 32) def on_data(self, slice: Slice) -> None: if self._he.is_ready: # The current value of self._he is represented by self._he.current.value self.plot("HurstExponent", "he", self._he.current.value)
The following reference table describes the HE
method:
he(symbol, period, max_lag=20, resolution=None, selector=None)
[source]Creates a new Hurst Exponent indicator for the specified symbol. The Hurst Exponent measures the long-term memory or self-similarity in a time series. The default maxLag value of 20 is chosen for reliable and accurate results, but using a higher lag may reduce precision.
- symbol (Symbol) — The symbol for which the Hurst Exponent is calculated.
- period (int) — The number of data points used to calculate the indicator at each step.
- max_lag (int, optional) — The maximum time lag used to compute the tau values for the Hurst Exponent calculation.
- resolution (Resolution, optional) — The resolution
- selector (Callable[IBaseData, float], optional) — Function to select a value from the BaseData to input into the indicator. Defaults to using the 'Value' property of BaseData if null.
The Hurst Exponent indicator for the specified symbol.
HE(symbol, period, maxLag=20, resolution=None, selector=None)
[source]Creates a new Hurst Exponent indicator for the specified symbol. The Hurst Exponent measures the long-term memory or self-similarity in a time series. The default maxLag value of 20 is chosen for reliable and accurate results, but using a higher lag may reduce precision.
- symbol (Symbol) — The symbol for which the Hurst Exponent is calculated.
- period (Int32) — The number of data points used to calculate the indicator at each step.
- maxLag (Int32, optional) — The maximum time lag used to compute the tau values for the Hurst Exponent calculation.
- resolution (Resolution, optional) — The resolution
- selector (Func<IBaseData, Decimal>, optional) — Function to select a value from the BaseData to input into the indicator. Defaults to using the 'Value' property of BaseData if null.
The Hurst Exponent indicator for the specified symbol.
If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.
For more information about the selector argument, see Alternative Price Fields.
For more information about plotting indicators, see Plotting Indicators.
You can manually create a HurstExponent
indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.
Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Update
update
method with time/number pair or an IndicatorDataPoint
. The indicator will only be ready after you prime it with enough data.
public class HurstExponentAlgorithm : QCAlgorithm { private Symbol _symbol; private HurstExponent _he; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _he = new HurstExponent(32); } public override void OnData(Slice data) { if (data.Bars.TryGetValue(_symbol, out var bar)) { _he.Update(bar.EndTime, bar.Close); } if (_he.IsReady) { // The current value of _he is represented by itself (_he) // or _he.Current.Value Plot("HurstExponent", "he", _he); } } }
class HurstExponentAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._he = HurstExponent(32) def on_data(self, slice: Slice) -> None: bar = slice.bars.get(self._symbol) if bar: self._he.update(bar.EndTime, bar.Close) if self._he.is_ready: # The current value of self._he is represented by self._he.current.value self.plot("HurstExponent", "he", self._he.current.value)
To register a manual indicator for automatic updates with the security data, call the RegisterIndicator
register_indicator
method.
public class HurstExponentAlgorithm : QCAlgorithm { private Symbol _symbol; private HurstExponent _he; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _he = new HurstExponent(32); RegisterIndicator(_symbol, _he, Resolution.Daily); } public override void OnData(Slice data) { if (_he.IsReady) { // The current value of _he is represented by itself (_he) // or _he.Current.Value Plot("HurstExponent", "he", _he); } } }
class HurstExponentAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._he = HurstExponent(32) self.register_indicator(self._symbol, self._he, Resolution.DAILY) def on_data(self, slice: Slice) -> None: if self._he.is_ready: # The current value of self._he is represented by self._he.current.value self.plot("HurstExponent", "he", self._he.current.value)
The following reference table describes the HurstExponent
constructor:
HurstExponent
Represents the Hurst Exponent indicator, which is used to measure the long-term memory of a time series. - H less than 0.5: Mean-reverting; high values followed by low ones, stronger as H approaches 0. - H equal to 0.5: Random walk (geometric). - H greater than 0.5: Trending; high values followed by higher ones, stronger as H approaches 1.
get_enumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
reset()
Resets the indicator to its initial state. This clears all internal data and resets
to_detailed_string()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
str
update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (datetime)
- value (float)
bool
update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
bool
consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet[IDataConsolidator]
current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
is_ready
Indicates whether the indicator has enough data to produce a valid result.
Indicates whether the indicator has enough data to produce a valid result.
bool
item
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
name
Gets a name for this indicator
Gets a name for this indicator
str
previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
warm_up_period
Gets the period over which the indicator is calculated.
Gets the period over which the indicator is calculated.
int
window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow[IndicatorDataPoint]
HurstExponent
Represents the Hurst Exponent indicator, which is used to measure the long-term memory of a time series. - H less than 0.5: Mean-reverting; high values followed by low ones, stronger as H approaches 0. - H equal to 0.5: Random walk (geometric). - H greater than 0.5: Trending; high values followed by higher ones, stronger as H approaches 1.
GetEnumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
Reset()
Resets the indicator to its initial state. This clears all internal data and resets
ToDetailedString()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
String
Update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (DateTime)
- value (decimal)
Boolean
Update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
Boolean
Consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet<IDataConsolidator>
Current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
IsReady
Indicates whether the indicator has enough data to produce a valid result.
Indicates whether the indicator has enough data to produce a valid result.
bool
Name
Gets a name for this indicator
Gets a name for this indicator
string
Previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
Samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
WarmUpPeriod
Gets the period over which the indicator is calculated.
Gets the period over which the indicator is calculated.
Int32
Window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow<IndicatorDataPoint>
[System.Int32]
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
Visualization
The following image shows plot values of selected properties of HurstExponent
using the plotly library.
Indicator History
To get the historical data of the HurstExponent
indicator, call the IndicatorHistory
self.indicator_history
method.
This method resets your indicator, makes a history request, and updates the indicator with the historical data.
Just like with regular history requests, the IndicatorHistory
indicator_history
method supports time periods based on a trailing number of bars, a trailing period of time, or a defined period of time.
If you don't provide a resolution
argument, it defaults to match the resolution of the security subscription.
public class HurstExponentAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; var he = HE(_symbol, 32); var countIndicatorHistory = IndicatorHistory(he, _symbol, 100, Resolution.Minute); var timeSpanIndicatorHistory = IndicatorHistory(he, _symbol, TimeSpan.FromDays(10), Resolution.Minute); var timePeriodIndicatorHistory = IndicatorHistory(he, _symbol, new DateTime(2024, 7, 1), new DateTime(2024, 7, 5), Resolution.Minute); } }
class HurstExponentAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol he = self.he(self._symbol, 32) count_indicator_history = self.indicator_history(he, self._symbol, 100, Resolution.MINUTE) timedelta_indicator_history = self.indicator_history(he, self._symbol, timedelta(days=10), Resolution.MINUTE) time_period_indicator_history = self.indicator_history(he, self._symbol, datetime(2024, 7, 1), datetime(2024, 7, 5), Resolution.MINUTE)
To make the IndicatorHistory
indicator_history
method update the indicator with an alternative price field instead of the close (or mid-price) of each bar, pass a selector
argument.
var indicatorHistory = IndicatorHistory(he, 100, Resolution.Minute, (bar) => ((TradeBar)bar).High);
indicator_history = self.indicator_history(he, 100, Resolution.MINUTE, lambda bar: bar.high) indicator_history_df = indicator_history.data_frame
If you already have a list of Slice objects, you can pass them to the IndicatorHistory
indicator_history
method to avoid the internal history request.
var history = History(_symbol, 100, Resolution.Minute); var historyIndicatorHistory = IndicatorHistory(he, history);