Universe Selection
ETF Constituents Universes
Introduction
The ETFConstituentsUniverseSelectionModel
selects a universe of US Equities based on the constituents of an ETF. These Universe Selection models rely on the US ETF Constituents dataset. They run on a daily schedule by default. To adjust the selection schedule, see Schedule.
Add ETF Constituents Universe Selection
To add an ETFConstituentsUniverseSelectionModel
to your algorithm, in the Initialize
initialize
method, call the AddUniverseSelection
add_universe_selection
method. The ETFConstituentsUniverseSelectionModel
constructor expects an ETF ticker.
// Run universe selection asynchronously to speed up your algorithm. UniverseSettings.Asynchronous = true; AddUniverseSelection(new ETFConstituentsUniverseSelectionModel("SPY"));
# Run universe selection asynchronously to speed up your algorithm. self.universe_settings.asynchronous = True self.add_universe_selection(ETFConstituentsUniverseSelectionModel("SPY"))
The following table describes the arguments the model accepts:
Argument | Data Type | Description | Default Value |
---|---|---|---|
etfTicker etf_ticker | string | Ticker of the ETF to get constituents for. To view the available ETFs, see Supported ETFs. | |
universeSettings universe_settings | UniverseSettings | The universe settings. If you don't provide an argument, the model uses the algorithm.UniverseSettings algorithm.universe_settings by default. | None |
universeFilterFunc universe_filter_func | Func<IEnumerable<ETFConstituentUniverse>, IEnumerable<Symbol>> Callable[[List[ETFConstituentUniverse]], List[Symbol]] | Function to filter ETF constituents. If you don't provide an argument, the model selects all of the ETF constituents by default. | None null |
If you provide a universeFilterFunc
universe_filter_func
argument, you can use the following attributes of the ETFConstituentUniverse
objects to select your universe:
The following example shows how to select the 10 Equities with the largest weight in the SPY ETF:
// Initialize asynchronous settings for speed and use the ETFConstituentsUniverseSelectionModel // to select the top 10 SPY constituents by weight, focusing on blue-chip stocks with minimal risk. public override void Initialize() { UniverseSettings.Asynchronous = true; AddUniverseSelection( new ETFConstituentsUniverseSelectionModel("SPY", universeFilterFunc: ETFConstituentsFilter) ); } private IEnumerable<Symbol> ETFConstituentsFilter(IEnumerable<ETFConstituentUniverse> constituents) { // Select the 10 largest Equities in the ETF. return constituents.OrderByDescending(c => c.Weight).Take(10).Select(c => c.Symbol); }
# Initialize asynchronous settings for speed and use the ETFConstituentsUniverseSelectionModel # to select the top 10 SPY constituents by weight, focusing on blue-chip stocks with minimal risk. def initialize(self) -> None: self.universe_settings.asynchronous = True self.add_universe_selection( ETFConstituentsUniverseSelectionModel("SPY", universe_filter_func=self._etf_constituents_filter) ) def _etf_constituents_filter(self, constituents: List[ETFConstituentUniverse]) -> List[Symbol]: # Select the 10 largest Equities in the ETF. selected = sorted( [c for c in constituents if c.weight], key=lambda c: c.weight, reverse=True )[:10] return [c.symbol for c in selected]
To move the ETF Symbol
and the selection function outside of the algorithm class, create a universe selection model that inherits the ETFConstituentsUniverseSelectionModel
class.
// Initialize asynchronous settings for speed and use the LargestWeightSPYETFUniverseSelectionModel // to select the top 10 blue-chip SPY constituents by weight, focusing on stocks with minimal risk. UniverseSettings.Asynchronous = true; AddUniverseSelection(new LargestWeightSPYETFUniverseSelectionModel()); // Outside of the algorithm class class LargestWeightSPYETFUniverseSelectionModel : ETFConstituentsUniverseSelectionModel { public LargestWeightSPYETFUniverseSelectionModel(UniverseSettings universeSettings = null) : base("SPY", universeFilterFunc: ETFConstituentsFilter) { } private static IEnumerable<Symbol> ETFConstituentsFilter(IEnumerable<ETFConstituentUniverse> constituents) { // Select the 10 largest Equities in the ETF. return constituents.OrderByDescending(c => c.Weight).Take(10).Select(c => c.Symbol); } }
# Initialize asynchronous settings for speed and use the LargestWeightSPYETFUniverseSelectionModel # to select the top 10 blue-chip SPY constituents by weight, focusing on stocks with minimal risk. self.universe_settings.asynchronous = True self.add_universe_selection(LargestWeightSPYETFUniverseSelectionModel()) # Outside of the algorithm class class LargestWeightSPYETFUniverseSelectionModel(ETFConstituentsUniverseSelectionModel): def __init__(self) -> None: super().__init__('SPY', universe_filter_func=self._etf_constituents_filter) def _etf_constituents_filter(self, constituents: List[ETFConstituentUniverse]) -> List[Symbol]: # Select the 10 largest Equities in the ETF. selected = sorted( [c for c in constituents if c.weight], key=lambda c: c.weight, reverse=True )[:10] return [c.symbol for c in selected]
To return the current universe constituents from the selection function, return Universe.UnchangedUNCHANGED
.
To view the implementation of this model, see the LEAN GitHub repositoryLEAN GitHub repository.