Supported Indicators
Auto Regressive Integrated Moving Average
Introduction
An Autoregressive Intergrated Moving Average (ARIMA) is a time series model which can be used to describe a set of data. In particular,with Xₜ representing the series, the model assumes the data are of form (after differencing
To view the implementation of this indicator, see the LEAN GitHub repository.
Using ARIMA Indicator
To create an automatic indicators for AutoRegressiveIntegratedMovingAverage
, call the ARIMA
helper method from the QCAlgorithm
class. The ARIMA
method creates a AutoRegressiveIntegratedMovingAverage
object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initialize
initialize
method.
public class AutoRegressiveIntegratedMovingAverageAlgorithm : QCAlgorithm { private Symbol _symbol; private AutoRegressiveIntegratedMovingAverage _arima; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _arima = ARIMA(_symbol, 1, 1, 1, 20); } public override void OnData(Slice data) { if (_arima.IsReady) { // The current value of _arima is represented by itself (_arima) // or _arima.Current.Value Plot("AutoRegressiveIntegratedMovingAverage", "arima", _arima); // Plot all properties of arima Plot("AutoRegressiveIntegratedMovingAverage", "handleexceptions", _arima.HandleExceptions); Plot("AutoRegressiveIntegratedMovingAverage", "arparameters", _arima.ArParameters); Plot("AutoRegressiveIntegratedMovingAverage", "maparameters", _arima.MaParameters); Plot("AutoRegressiveIntegratedMovingAverage", "intercept", _arima.Intercept); Plot("AutoRegressiveIntegratedMovingAverage", "arresidualerror", _arima.ArResidualError); Plot("AutoRegressiveIntegratedMovingAverage", "maresidualerror", _arima.MaResidualError); } } }
class AutoRegressiveIntegratedMovingAverageAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._arima = self.arima(self._symbol, 1, 1, 1, 20) def on_data(self, slice: Slice) -> None: if self._arima.is_ready: # The current value of self._arima is represented by self._arima.current.value self.plot("AutoRegressiveIntegratedMovingAverage", "arima", self._arima.current.value) # Plot all attributes of self._arima self.plot("AutoRegressiveIntegratedMovingAverage", "handle_exceptions", self._arima.handle_exceptions) self.plot("AutoRegressiveIntegratedMovingAverage", "ar_parameters", self._arima.ar_parameters) self.plot("AutoRegressiveIntegratedMovingAverage", "ma_parameters", self._arima.ma_parameters) self.plot("AutoRegressiveIntegratedMovingAverage", "intercept", self._arima.intercept) self.plot("AutoRegressiveIntegratedMovingAverage", "ar_residual_error", self._arima.ar_residual_error) self.plot("AutoRegressiveIntegratedMovingAverage", "ma_residual_error", self._arima.ma_residual_error)
The following reference table describes the ARIMA
method:
arima(symbol, ar_order, diff_order, ma_order, period, resolution=None, selector=None)
[source]Creates a new ARIMA indicator.
- symbol (Symbol) — The symbol whose ARIMA indicator we want
- ar_order (int) — AR order (p) -- defines the number of past values to consider in the AR component of the model.
- diff_order (int) — Difference order (d) -- defines how many times to difference the model before fitting parameters.
- ma_order (int) — MA order (q) -- defines the number of past values to consider in the MA component of the model.
- period (int) — Size of the rolling series to fit onto
- resolution (Resolution, optional) — The resolution
- selector (Callable[IBaseData, float], optional) — x.Value)
The ARIMA indicator for the requested symbol over the specified period
ARIMA(symbol, arOrder, diffOrder, maOrder, period, resolution=None, selector=None)
[source]Creates a new ARIMA indicator.
- symbol (Symbol) — The symbol whose ARIMA indicator we want
- arOrder (Int32) — AR order (p) -- defines the number of past values to consider in the AR component of the model.
- diffOrder (Int32) — Difference order (d) -- defines how many times to difference the model before fitting parameters.
- maOrder (Int32) — MA order (q) -- defines the number of past values to consider in the MA component of the model.
- period (Int32) — Size of the rolling series to fit onto
- resolution (Resolution, optional) — The resolution
- selector (Func<IBaseData, Decimal>, optional) — x.Value)
The ARIMA indicator for the requested symbol over the specified period
If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.
For more information about the selector argument, see Alternative Price Fields.
For more information about plotting indicators, see Plotting Indicators.
You can manually create a AutoRegressiveIntegratedMovingAverage
indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.
Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Update
update
method with time/number pair or an IndicatorDataPoint
. The indicator will only be ready after you prime it with enough data.
public class AutoRegressiveIntegratedMovingAverageAlgorithm : QCAlgorithm { private Symbol _symbol; private AutoRegressiveIntegratedMovingAverage _arima; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _arima = new AutoRegressiveIntegratedMovingAverage(1, 1, 1, 20, True); } public override void OnData(Slice data) { if (data.Bars.TryGetValue(_symbol, out var bar)) { _arima.Update(bar.EndTime, bar.Close); } if (_arima.IsReady) { // The current value of _arima is represented by itself (_arima) // or _arima.Current.Value Plot("AutoRegressiveIntegratedMovingAverage", "arima", _arima); // Plot all properties of arima Plot("AutoRegressiveIntegratedMovingAverage", "handleexceptions", _arima.HandleExceptions); Plot("AutoRegressiveIntegratedMovingAverage", "arparameters", _arima.ArParameters); Plot("AutoRegressiveIntegratedMovingAverage", "maparameters", _arima.MaParameters); Plot("AutoRegressiveIntegratedMovingAverage", "intercept", _arima.Intercept); Plot("AutoRegressiveIntegratedMovingAverage", "arresidualerror", _arima.ArResidualError); Plot("AutoRegressiveIntegratedMovingAverage", "maresidualerror", _arima.MaResidualError); } } }
class AutoRegressiveIntegratedMovingAverageAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._arima = AutoRegressiveIntegratedMovingAverage(1, 1, 1, 20, True) def on_data(self, slice: Slice) -> None: bar = slice.bars.get(self._symbol) if bar: self._arima.update(bar.EndTime, bar.Close) if self._arima.is_ready: # The current value of self._arima is represented by self._arima.current.value self.plot("AutoRegressiveIntegratedMovingAverage", "arima", self._arima.current.value) # Plot all attributes of self._arima self.plot("AutoRegressiveIntegratedMovingAverage", "handle_exceptions", self._arima.handle_exceptions) self.plot("AutoRegressiveIntegratedMovingAverage", "ar_parameters", self._arima.ar_parameters) self.plot("AutoRegressiveIntegratedMovingAverage", "ma_parameters", self._arima.ma_parameters) self.plot("AutoRegressiveIntegratedMovingAverage", "intercept", self._arima.intercept) self.plot("AutoRegressiveIntegratedMovingAverage", "ar_residual_error", self._arima.ar_residual_error) self.plot("AutoRegressiveIntegratedMovingAverage", "ma_residual_error", self._arima.ma_residual_error)
To register a manual indicator for automatic updates with the security data, call the RegisterIndicator
register_indicator
method.
public class AutoRegressiveIntegratedMovingAverageAlgorithm : QCAlgorithm { private Symbol _symbol; private AutoRegressiveIntegratedMovingAverage _arima; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _arima = new AutoRegressiveIntegratedMovingAverage(1, 1, 1, 20, True); RegisterIndicator(_symbol, _arima, Resolution.Daily); } public override void OnData(Slice data) { if (_arima.IsReady) { // The current value of _arima is represented by itself (_arima) // or _arima.Current.Value Plot("AutoRegressiveIntegratedMovingAverage", "arima", _arima); } } }
class AutoRegressiveIntegratedMovingAverageAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._arima = AutoRegressiveIntegratedMovingAverage(1, 1, 1, 20, True) self.register_indicator(self._symbol, self._arima, Resolution.DAILY) def on_data(self, slice: Slice) -> None: if self._arima.is_ready: # The current value of self._arima is represented by self._arima.current.value self.plot("AutoRegressiveIntegratedMovingAverage", "arima", self._arima.current.value)
The following reference table describes the AutoRegressiveIntegratedMovingAverage
constructor:
AutoRegressiveIntegratedMovingAverage
An Autoregressive Intergrated Moving Average (ARIMA) is a time series model which can be used to describe a set of data. In particular,with Xₜ representing the series, the model assumes the data are of form (after differencing _diffOrder times):
get_enumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
reset()
Resets this indicator to its initial state
to_detailed_string()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
str
update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (datetime)
- value (float)
bool
update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
bool
ar_parameters
Fitted AR parameters (φ terms).
Fitted AR parameters (φ terms).
float[]
ar_residual_error
The variance of the residuals (Var(ε)) from the first step of Double[]).
The variance of the residuals (Var(ε)) from the first step of Double[]).
float
consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet[IDataConsolidator]
current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
handle_exceptions
Whether or not to handle potential exceptions, returning a zero value. I.e, the values provided as input are not valid by the Normal Equations direct regression method
Whether or not to handle potential exceptions, returning a zero value. I.e, the values provided as input are not valid by the Normal Equations direct regression method
bool
intercept
Fitted intercept (c term).
Fitted intercept (c term).
float
is_ready
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
item
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
ma_parameters
Fitted MA parameters (θ terms).
Fitted MA parameters (θ terms).
float[]
ma_residual_error
The variance of the residuals (Var(ε)) from the second step of Double[]).
The variance of the residuals (Var(ε)) from the second step of Double[]).
float
name
Gets a name for this indicator
Gets a name for this indicator
str
previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
warm_up_period
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
int
window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow[IndicatorDataPoint]
AutoRegressiveIntegratedMovingAverage
An Autoregressive Intergrated Moving Average (ARIMA) is a time series model which can be used to describe a set of data. In particular,with Xₜ representing the series, the model assumes the data are of form (after differencing _diffOrder times):
GetEnumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
Reset()
Resets this indicator to its initial state
ToDetailedString()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
String
Update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (DateTime)
- value (decimal)
Boolean
Update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
Boolean
ArParameters
Fitted AR parameters (φ terms).
Fitted AR parameters (φ terms).
Double[]
ArResidualError
The variance of the residuals (Var(ε)) from the first step of Double[]).
The variance of the residuals (Var(ε)) from the first step of Double[]).
Double
Consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet<IDataConsolidator>
Current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
HandleExceptions
Whether or not to handle potential exceptions, returning a zero value. I.e, the values provided as input are not valid by the Normal Equations direct regression method
Whether or not to handle potential exceptions, returning a zero value. I.e, the values provided as input are not valid by the Normal Equations direct regression method
bool
Intercept
Fitted intercept (c term).
Fitted intercept (c term).
Double
IsReady
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
MaParameters
Fitted MA parameters (θ terms).
Fitted MA parameters (θ terms).
Double[]
MaResidualError
The variance of the residuals (Var(ε)) from the second step of Double[]).
The variance of the residuals (Var(ε)) from the second step of Double[]).
Double
Name
Gets a name for this indicator
Gets a name for this indicator
string
Previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
Samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
WarmUpPeriod
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
Int32
Window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow<IndicatorDataPoint>
[System.Int32]
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
Visualization
The following image shows plot values of selected properties of AutoRegressiveIntegratedMovingAverage
using the plotly library.
Indicator History
To get the historical data of the AutoRegressiveIntegratedMovingAverage
indicator, call the IndicatorHistory
self.indicator_history
method.
This method resets your indicator, makes a history request, and updates the indicator with the historical data.
Just like with regular history requests, the IndicatorHistory
indicator_history
method supports time periods based on a trailing number of bars, a trailing period of time, or a defined period of time.
If you don't provide a resolution
argument, it defaults to match the resolution of the security subscription.
public class AutoRegressiveIntegratedMovingAverageAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; var arima = ARIMA(_symbol, 1, 1, 1, 20); var countIndicatorHistory = IndicatorHistory(arima, _symbol, 100, Resolution.Minute); var timeSpanIndicatorHistory = IndicatorHistory(arima, _symbol, TimeSpan.FromDays(10), Resolution.Minute); var timePeriodIndicatorHistory = IndicatorHistory(arima, _symbol, new DateTime(2024, 7, 1), new DateTime(2024, 7, 5), Resolution.Minute); } }
class AutoRegressiveIntegratedMovingAverageAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol arima = self.arima(self._symbol, 1, 1, 1, 20) count_indicator_history = self.indicator_history(arima, self._symbol, 100, Resolution.MINUTE) timedelta_indicator_history = self.indicator_history(arima, self._symbol, timedelta(days=10), Resolution.MINUTE) time_period_indicator_history = self.indicator_history(arima, self._symbol, datetime(2024, 7, 1), datetime(2024, 7, 5), Resolution.MINUTE)
To make the IndicatorHistory
indicator_history
method update the indicator with an alternative price field instead of the close (or mid-price) of each bar, pass a selector
argument.
var indicatorHistory = IndicatorHistory(arima, 100, Resolution.Minute, (bar) => ((TradeBar)bar).High);
indicator_history = self.indicator_history(arima, 100, Resolution.MINUTE, lambda bar: bar.high) indicator_history_df = indicator_history.data_frame
If you already have a list of Slice objects, you can pass them to the IndicatorHistory
indicator_history
method to avoid the internal history request.
var history = History(_symbol, 100, Resolution.Minute); var historyIndicatorHistory = IndicatorHistory(arima, history);