Option Strategies
Long Put Butterfly
Introduction
Long Put butterfly is the combination of a bull put spread and a bear put spread. In this strategy, all the puts have the same underlying stock, the same expiration date, and the strike price distance of ITM-ATM and OTM-ATM put pairs are the same. The long put butterfly strategy consists of buying an ITM put, buying an OTM put, and selling 2 ATM puts. This strategy profits from low volatility.
Implementation
Follow these steps to implement the long put butterfly strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
on_data
method, select the contracts of the strategy legs. - In the
OnData
on_data
method, place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 2, 1); SetEndDate(2017, 3, 5); SetCash(500000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().PutButterfly(30, 5)); }
def initialize(self) -> None: self.set_start_date(2017, 2, 1) self.set_end_date(2017, 3, 5) self.set_cash(500000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().put_butterfly(30, 5))
The PutButterfly
put_butterfly
filter narrows the universe down to just the three contracts you need to form a long put butterfly.
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Select the call Option contracts with the furthest expiry var expiry = chain.Max(x =x> x.Expiry); var puts = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Put); if (puts.Count() == 0) return; // Select the ATM, ITM and OTM contracts from the remaining contracts var atmPut = puts.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First(); var itmPut = puts.OrderBy(x => x.Strike).SkipLast(1).Last(); var otmPut = puts.Single(x => x.Strike == atmPut.Strike * 2 - itmPut.Strike);
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Get the furthest expiry date of the contracts expiry = max([x.expiry for x in chain]) # Select the call Option contracts with the furthest expiry puts = [i for i in chain if i.expiry == expiry and i.right == OptionRight.PUT] if len(puts) == 0: return # Select the ATM, ITM and OTM contracts from the remaining contracts atm_put = sorted(puts, key=lambda x: abs(x.strike - chain.underlying.price))[0] itm_put = sorted(puts, key=lambda x: x.strike)[-2] otm_put = [x for x in puts if x.strike == atm_put.strike * 2 - itm_put.strike][0]
Approach A: Call the OptionStrategies.ButterflyPut
OptionStrategies.butterfly_put
method with the details of each leg and then pass the result to the Buy
buy
method.
var optionStrategy = OptionStrategies.ButterflyPut(_symbol, itmPut.Strike, atmPut.Strike, otmPut.Strike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.butterfly_put(self._symbol, itm_put.strike, atm_put.strike, otm_put.strike, expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var legs = new List<Leg>() { Leg.Create(atmPut.Symbol, -2), Leg.Create(itmPut.Symbol, 1), Leg.Create(otmPut.Symbol, 1) }; ComboMarketOrder(legs, 1);
legs = [ Leg.create(atm_put.symbol, -2), Leg.create(itm_put.symbol, 1), Leg.create(otm_put.symbol, 1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The long put butterfly is a limited-reward-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} P^{OTM}_T & = & (K^{OTM} - S_T)^{+}\\ P^{ITM}_T & = & (K^{ITM} - S_T)^{+}\\ P^{ATM}_T & = & (K^{ATM} - S_T)^{+}\\ P_T & = & (P^{OTM}_T + P^{ITM}_T - 2\times P^{ATM}_T + 2\times P^{ATM}_0 - P^{ITM}_0 - P^{OTM}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & P^{ITM}_T & = & \textrm{ITM put value at time T}\\ & P^{ATM}_T & = & \textrm{ATM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{OTM} & = & \textrm{OTM put strike price}\\ & K^{ITM} & = & \textrm{ITM put strike price}\\ & K^{ATM} & = & \textrm{ATM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & P^{ITM}_0 & = & \textrm{ITM put value at position opening (debit paid)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (debit paid)}\\ & P^{ATM}_0 & = & \textrm{ATM put value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is $K^{ATM} - K^{OTM} + 2\times P^{ATM}_0 - P^{ITM}_0 - P^{OTM}_0$. It occurs when the underlying price is the same at expiration as it was when you open the trade. In this case, the payout of the combined bull put and bear put spreads are at their maximum.
The maximum loss is the net debit paid, $2\times P^{ATM}_0 - P^{ITM}_0 - P^{OTM}_0$. It occurs when the underlying price is below the ITM strike price or above the OTM strike price at expiration.
If the Option is American Option, there is a risk of early assignment on the contracts you sell.
Example
The following table shows the price details of the assets in the long put butterfly algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
ITM put | 37.80 | 832.50 |
ATM put | 14.70 | 800.00 |
OTM put | 5.70 | 767.50 |
Underlying Equity at expiration | 829.08 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} P^{OTM}_T & = & (K^{OTM} - S_T)^{+}\\ & = & (829.08-832.50)^{+}\\ & = & 0\\ P^{ITM}_T & = & (K^{ITM} - S_T)^{+}\\ & = & (829.08-767.50)^{+}\\ & = & 61.58\\ P^{ATM}_T & = & (K^{ATM} - S_T)^{+}\\ & = & (829.08-800.00)^{+}\\ & = & 29.08\\ P_T & = & (P^{OTM}_T + P^{ITM}_T - 2\times P^{ATM}_T + 2\times P^{ATM}_0 - P^{ITM}_0 - P^{OTM}_0)\times m - fee\\ & = & (61.58+0-29.08\times2-5.70-37.80+14.70\times2)\times100-1.00\times4\\ & = & -1072 \end{array} $$So, the strategy loses $1,072.
The following algorithm implements a long put butterfly Option strategy: