Supported Indicators

Beta

Introduction

In technical analysis Beta indicator is used to measure volatility or risk of a target (ETF) relative to the overall risk (volatility) of the reference (market indexes). The Beta indicators compares target's price movement to the movements of the indexes over the same period of time. It is common practice to use the SPX index as a benchmark of the overall reference market when it comes to Beta calculations.

To view the implementation of this indicator, see the LEAN GitHub repository.

Using B Indicator

To create an automatic indicators for Beta, call the B helper method from the QCAlgorithm class. The B method creates a Beta object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initializeinitialize method.

public class BetaAlgorithm : QCAlgorithm
{
    private Symbol _symbol;
    private Symbol _reference;
    private Beta _b;

    public override void Initialize()
    {
        _symbol = AddEquity("SPY", Resolution.Daily).Symbol;
        _reference = AddEquity("QQQ", Resolution.Daily).Symbol;
        _b = B(_symbol, reference, 20);
    }

    public override void OnData(Slice data)
    {
        if (_b.IsReady)
        {
            // The current value of _b is represented by itself (_b)
            // or _b.Current.Value
            Plot("Beta", "b", _b);
            
        }
    }
}
class BetaAlgorithm(QCAlgorithm):
    def initialize(self) -> None:
        self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol
        self.reference = self.add_equity("QQQ", Resolution.DAILY).symbol
        self._b = self.b(self._symbol, reference, 20)

    def on_data(self, slice: Slice) -> None:
        if self._b.is_ready:
            # The current value of self._b is represented by self._b.current.value
            self.plot("Beta", "b", self._b.current.value)
            

The following reference table describes the B method:

b(target, reference, period, resolution=None, selector=None)[source]

Creates a new BollingerBands indicator which will compute the MiddleBand, UpperBand, LowerBand, and StandardDeviation

Parameters:
  • target (Symbol) — The target symbol whose Beta value we want
  • reference (Symbol) — The reference symbol to compare with the target symbol
  • period (int) — The period of the Beta indicator
  • resolution (Resolution, optional) — The resolution
  • selector (Callable[IBaseData, IBaseDataBar], optional) — Selects a value from the BaseData to send into the indicator, if null defaults to casting the input value to a TradeBar
Returns:

The Beta indicator for the given parameters

Return type:

Beta

B(target, reference, period, resolution=None, selector=None)[source]

Creates a new BollingerBands indicator which will compute the MiddleBand, UpperBand, LowerBand, and StandardDeviation

Parameters:
  • target (Symbol) — The target symbol whose Beta value we want
  • reference (Symbol) — The reference symbol to compare with the target symbol
  • period (Int32) — The period of the Beta indicator
  • resolution (Resolution, optional) — The resolution
  • selector (Func<IBaseData, IBaseDataBar>, optional) — Selects a value from the BaseData to send into the indicator, if null defaults to casting the input value to a TradeBar
Returns:

The Beta indicator for the given parameters

Return type:

Beta

If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.

For more information about the selector argument, see Alternative Price Fields.

For more information about plotting indicators, see Plotting Indicators.

You can manually create a Beta indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.

Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Updateupdate method with a TradeBar or QuoteBar. The indicator will only be ready after you prime it with enough data.

public class BetaAlgorithm : QCAlgorithm
{
    private Symbol _symbol;
    private Symbol _reference;
    private Beta _b;

    public override void Initialize()
    {
        _symbol = AddEquity("SPY", Resolution.Daily).Symbol;
        _reference = AddEquity("QQQ", Resolution.Daily).Symbol;
        _b = new Beta("", _symbol, reference, 20);
    }

    public override void OnData(Slice data)
    {
        if (data.Bars.TryGetValue(_symbol, out var bar))
        {      
            _b.Update(bar);
        }
        if (data.Bars.TryGetValue(_reference, out bar))
        {      
            _b.Update(bar);
        }
   
        if (_b.IsReady)
        {
            // The current value of _b is represented by itself (_b)
            // or _b.Current.Value
            Plot("Beta", "b", _b);
            
        }
    }
}
class BetaAlgorithm(QCAlgorithm):
    def initialize(self) -> None:
        self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol
        self.reference = self.add_equity("QQQ", Resolution.DAILY).symbol
        self._b = Beta("", self._symbol, reference, 20)

    def on_data(self, slice: Slice) -> None:
        bar = slice.bars.get(self._symbol)
        if bar:
            self._b.update(bar)
        bar = slice.bars.get(self.referece)
        if bar:
            self._b.update(bar)
        if self._b.is_ready:
            # The current value of self._b is represented by self._b.current.value
            self.plot("Beta", "b", self._b.current.value)
            

To register a manual indicator for automatic updates with the security data, call the RegisterIndicatorregister_indicator method.

public class BetaAlgorithm : QCAlgorithm
{
    private Symbol _symbol;
    private Symbol _reference;
    private Beta _b;

    public override void Initialize()
    {
        _symbol = AddEquity("SPY", Resolution.Daily).Symbol;
        _reference = AddEquity("QQQ", Resolution.Daily).Symbol;
        _b = new Beta("", _symbol, reference, 20);
        RegisterIndicator(_symbol, _b, Resolution.Daily);
        RegisterIndicator(reference, _b, Resolution.Daily);
    }

    public override void OnData(Slice data)
    {
        if (_b.IsReady)
        {
            // The current value of _b is represented by itself (_b)
            // or _b.Current.Value
            Plot("Beta", "b", _b);
            
        }
    }
}
class BetaAlgorithm(QCAlgorithm):
    def initialize(self) -> None:
        self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol
        self.reference = self.add_equity("QQQ", Resolution.DAILY).symbol
        self._b = Beta("", self._symbol, reference, 20)
        self.register_indicator(self._symbol, self._b, Resolution.DAILY)
        self.register_indicator(reference, self._b, Resolution.DAILY)

    def on_data(self, slice: Slice) -> None:
        if self._b.is_ready:
            # The current value of self._b is represented by self._b.current.value
            self.plot("Beta", "b", self._b.current.value)
            

The following reference table describes the Beta constructor:

Beta

class QuantConnect.Indicators.Beta[source]

In technical analysis Beta indicator is used to measure volatility or risk of a target (ETF) relative to the overall risk (volatility) of the reference (market indexes). The Beta indicators compares target's price movement to the movements of the indexes over the same period of time. It is common practice to use the SPX index as a benchmark of the overall reference market when it comes to Beta calculations.

get_enumerator()

Returns an enumerator that iterates through the history window.

Return type:

IEnumerator[IndicatorDataPoint]

reset()

Resets this indicator to its initial state

to_detailed_string()

Provides a more detailed string of this indicator in the form of {Name} - {Value}

Return type:

str

update(time, value)

Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise

Parameters:
  • time (datetime)
  • value (float)
Return type:

bool

update(input)

Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise

Parameters:
  • input (IBaseData)
Return type:

bool

property consolidators

The data consolidators associated with this indicator if any

Returns:

The data consolidators associated with this indicator if any

Return type:

ISet[IDataConsolidator]

property current

Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Returns:

Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Return type:

IndicatorDataPoint

property is_ready

Gets a flag indicating when the indicator is ready and fully initialized

Returns:

Gets a flag indicating when the indicator is ready and fully initialized

Return type:

bool

property item

Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.

Returns:

Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.

Return type:

IndicatorDataPoint

property name

Gets a name for this indicator

Returns:

Gets a name for this indicator

Return type:

str

property previous

Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Returns:

Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Return type:

IndicatorDataPoint

property samples

Gets the number of samples processed by this indicator

Returns:

Gets the number of samples processed by this indicator

Return type:

int

property warm_up_period

Required period, in data points, for the indicator to be ready and fully initialized.

Returns:

Required period, in data points, for the indicator to be ready and fully initialized.

Return type:

int

property window

A rolling window keeping a history of the indicator values of a given period

Returns:

A rolling window keeping a history of the indicator values of a given period

Return type:

RollingWindow[IndicatorDataPoint]

Beta

class QuantConnect.Indicators.Beta[source]

In technical analysis Beta indicator is used to measure volatility or risk of a target (ETF) relative to the overall risk (volatility) of the reference (market indexes). The Beta indicators compares target's price movement to the movements of the indexes over the same period of time. It is common practice to use the SPX index as a benchmark of the overall reference market when it comes to Beta calculations.

GetEnumerator()

Returns an enumerator that iterates through the history window.

Return type:

IEnumerator[IndicatorDataPoint]

Reset()

Resets this indicator to its initial state

ToDetailedString()

Provides a more detailed string of this indicator in the form of {Name} - {Value}

Return type:

String

Update(time, value)

Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise

Parameters:
  • time (DateTime)
  • value (decimal)
Return type:

Boolean

Update(input)

Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise

Parameters:
  • input (IBaseData)
Return type:

Boolean

property Consolidators

The data consolidators associated with this indicator if any

Returns:

The data consolidators associated with this indicator if any

Return type:

ISet<IDataConsolidator>

property Current

Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Returns:

Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Return type:

IndicatorDataPoint

property IsReady

Gets a flag indicating when the indicator is ready and fully initialized

Returns:

Gets a flag indicating when the indicator is ready and fully initialized

Return type:

bool

property Name

Gets a name for this indicator

Returns:

Gets a name for this indicator

Return type:

string

property Previous

Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Returns:

Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.

Return type:

IndicatorDataPoint

property Samples

Gets the number of samples processed by this indicator

Returns:

Gets the number of samples processed by this indicator

Return type:

int

property WarmUpPeriod

Required period, in data points, for the indicator to be ready and fully initialized.

Returns:

Required period, in data points, for the indicator to be ready and fully initialized.

Return type:

Int32

property Window

A rolling window keeping a history of the indicator values of a given period

Returns:

A rolling window keeping a history of the indicator values of a given period

Return type:

RollingWindow<IndicatorDataPoint>

property [System.Int32]

Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.

Returns:

Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.

Return type:

IndicatorDataPoint

Visualization

The following image shows plot values of selected properties of Beta using the plotly library.

Beta line plot.

Indicator History

To get the historical data of the Beta indicator, call the IndicatorHistoryself.indicator_history method. This method resets your indicator, makes a history request, and updates the indicator with the historical data. Just like with regular history requests, the IndicatorHistoryindicator_history method supports time periods based on a trailing number of bars, a trailing period of time, or a defined period of time. If you don't provide a resolution argument, it defaults to match the resolution of the security subscription.

public class BetaAlgorithm : QCAlgorithm
{
    private Symbol _symbol;
    private Symbol _reference;

    public override void Initialize()
    {
        _symbol = AddEquity("SPY", Resolution.Daily).Symbol;
        _reference = AddEquity("QQQ", Resolution.Daily).Symbol;
        var b = B(_symbol, reference, 20);
        var countIndicatorHistory = IndicatorHistory(b, new[] { _symbol, _reference }, 100, Resolution.Minute);
        var timeSpanIndicatorHistory = IndicatorHistory(b, new[] { _symbol, _reference }, TimeSpan.FromDays(10), Resolution.Minute);
        var timePeriodIndicatorHistory = IndicatorHistory(b, new[] { _symbol, _reference }, new DateTime(2024, 7, 1), new DateTime(2024, 7, 5), Resolution.Minute);
    }
}
class BetaAlgorithm(QCAlgorithm):
    def initialize(self) -> None:
        self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol
        self._reference = self.add_equity("QQQ", Resolution.DAILY).symbol
        b = self.b(self._symbol, reference, 20)
        count_indicator_history = self.indicator_history(b, [self._symbol, self._reference], 100, Resolution.MINUTE)
        timedelta_indicator_history = self.indicator_history(b, [self._symbol, self._reference], timedelta(days=10), Resolution.MINUTE)
        time_period_indicator_history = self.indicator_history(b, [self._symbol, self._reference], datetime(2024, 7, 1), datetime(2024, 7, 5), Resolution.MINUTE)

To make the IndicatorHistoryindicator_history method update the indicator with an alternative price field instead of the close (or mid-price) of each bar, pass a selector argument.

var indicatorHistory = IndicatorHistory(b, 100, Resolution.Minute, (bar) => ((TradeBar)bar).High);
indicator_history = self.indicator_history(b, 100, Resolution.MINUTE, lambda bar: bar.high)
indicator_history_df = indicator_history.data_frame

If you already have a list of Slice objects, you can pass them to the IndicatorHistoryindicator_history method to avoid the internal history request.

var history = History(new[] { _symbol, _reference }, 100, Resolution.Minute);
var historyIndicatorHistory = IndicatorHistory(b, history);

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: