Option Strategies
Short Call Calendar Spread
Introduction
Call calendar spread, also known as call horizontal spread, is a combination of a longer-term (far-leg/front-month) call and a shorter-term (near-leg/back-month) call, where all calls have the same underlying stock and the same strike price. The short call calendar spread consists of selling a longer-term call and buying a shorter-term call. The strategy profits from from an increase in the underlying price.
Implementation
Follow these steps to implement the short call calendar spread strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
on_data
method, select the strike price and expiration dates of the contracts in the strategy legs. - In the
OnData
on_data
method, select the contracts and place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 2, 1); SetEndDate(2017, 2, 19); SetCash(500000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().CallCalendarSpread(0, 30, 60)); }
def initialize(self) -> None: self.set_start_date(2017, 2, 1) self.set_end_date(2017, 2, 19) self.set_cash(500000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().call_calendar_spread(0, 30, 60))
The CallCalendarSpread
call_calendar_spread
filter narrows the universe down to just the two contracts you need to form a short call calendar spread.
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Get the ATM strike var atmStrike = chain.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First().Strike; // Select the ATM call Option contracts var calls = chain.Where(x => x.Strike == atmStrike && x.Right == OptionRight.Call); if (calls.Count() == 0) return; // Select the near and far expiry contracts var expiries = calls.Select(x => x.Expiry).ToList(); var nearExpiry = expiries.Min(); var farExpiry = expiries.Max();
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Get the ATM strike atm_strike = sorted(chain, key=lambda x: abs(x.strike - chain.underlying.price))[0].strike # Select the ATM call Option contracts calls = [i for i in chain if i.strike == atm_strike and i.right == OptionRight.CALL] if len(calls) == 0: return # Select the near and far expiry dates expiries = sorted([x.expiry for x in calls]) near_expiry = expiries[0] far_expiry = expiries[-1]
Approach A: Call the OptionStrategies.ShortCallCalendarSpread
OptionStrategies.short_call_calendar_spread
method with the details of each leg and then pass the result to the Buy
buy
method.
var optionStrategy = OptionStrategies.ShortCallCalendarSpread(_symbol, atmStrike, nearExpiry, farExpiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.short_call_calendar_spread(self._symbol, atm_strike, near_expiry, far_expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var nearExpiryCall = calls.Single(x => x.Expiry == nearExpiry); var farExpiryCall = calls.Single(x => x.Expiry == farExpiry); var legs = new List<Leg>() { Leg.Create(nearExpiryCall.Symbol, 1), Leg.Create(farExpiryCall.Symbol, -1) }; ComboMarketOrder(legs, 1);
near_expiry_call = [x for x in calls if x.expiry == near_expiry][0] far_expiry_call = [x for x in calls if x.expiry == far_expiry][0] legs = [ Leg.create(near_expiry_call.symbol, 1), Leg.create(far_expiry_call.symbol, -1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The short call calendar spread is a limited-reward-limited-risk strategy. The payoff at the shorter-term expiration is
$$ \begin{array}{rcll} C^{\textrm{short-term}}_T & = & (S_T - K)^{+}\\ P_T & = & (C^{\textrm{short-term}}_T - C^{\textrm{long-term}}_T + C^{\textrm{long-term}}_0 - C^{\textrm{short-term}}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{\textrm{short-term}}_T & = & \textrm{Shorter term call value at time T}\\ & C^{\textrm{long-term}}_T & = & \textrm{Longer term call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K & = & \textrm{Strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{\textrm{short-term}}_0 & = & \textrm{Shorter term call value at position opening (debit paid)}\\ & C^{\textrm{long-term}}_0 & = & \textrm{Longer term call value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of shorter term call expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is the net credit received, $C^{\textrm{long-term}}_0 - C^{\textrm{short-term}}_0$. It occurs when the underlying price moves very deep ITM or OTM so the values of both calls are close to zero.
The maximum loss is undetermined because it depends on the underlying volatility. It occurs when $S_T = S_0$ and the spread of the 2 calls are at their maximum.
If the Option is American Option, there is a risk of early assignment on the contract you sell. If you don't close the call positions together, the naked short call will have unlimited drawdown risk after the long call expires.
Example
The following table shows the price details of the assets in the short call calendar spread:
Asset | Price ($) | Strike ($) |
---|---|---|
Longer-term call at the start of the trade | 4.40 | 835.00 |
Shorter-term call at the start of the trade | 36.80 | 767.50 |
Longer-term call at time $T$ | 31.35 | 835.00 |
Underlying Equity at time $T$ | 829.08 | - |
Therefore, the payoff at time $T$ (the expiration of the short-term call) is
$$ \begin{array}{rcll} C^{\textrm{short-term}}_T & = & (S_T - K)^{+}\\ & = & (828.07-800.00)^{+}\\ & = & 28.07\\ P_T & = & (-C^{\textrm{long-term}}_T + C^{\textrm{short-term}}_T - C^{\textrm{short-term}}_0 + C^{\textrm{long-term}}_0)\times m - fee\\ & = & (-31.35+28.07-11.30+20.00)\times100-1.00\times2\\ & = & 540 \end{array} $$So, the strategy gains $540.
The following algorithm implements a short call calendar spread Option strategy: