book
Checkout our new book! Hands on AI Trading with Python, QuantConnect, and AWS Learn More arrow

Option Strategies

Protective Collar

Introduction

A Protective Collar is an Options strategy that consists of a covered call and a long put (protective put) with a lower strike price than the short call contract. In contrast to the covered call, the protective put component limits the drawdown of the strategy when the underlying price decreases too much.

Implementation

Follow these steps to implement the protective collar strategy:

  1. In the initialize method, set the start date, set the end date, subscribe to the underlying Equity, and create an Option universe.
  2. Select Language:
    def initialize(self) -> None:
        self.set_start_date(2017, 4, 1)
        self.set_end_date(2017, 4, 30)
        self.set_cash(100000)
    
        self.universe_settings.asynchronous = True
        option = self.add_option("GOOG", Resolution.MINUTE)
        self._symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().protective_collar(30, -1, -10))

    The protective_collar filter narrows the universe down to just the two contracts you need to form a protective collar.

  3. In the on_data method, select the Option contracts.
  4. Select Language:
    def on_data(self, slice: Slice) -> None:
        if self.portfolio.invested:
            return
    
        # Get the OptionChain
        chain = slice.option_chains.get(self._symbol, None)
        if not chain:
            return
    
        # Select an expiry date
        expiry = max([x.expiry for x in chain])
    
        # Select the call and put contracts that expire on the selected date
        calls = [x for x in chain if x.right == OptionRight.CALL and x.expiry == expiry]
        puts = [x for x in chain if x.right == OptionRight.PUT and x.expiry == expiry]
        if not calls or not puts:
            return
    
        # Select the OTM contracts
        call = sorted(calls, key = lambda x: x.strike)[-1]
        put = sorted(puts, key = lambda x: x.strike)[0]
  5. In the on_data method, select the contracts and place the orders.
  6. Approach A: Call the OptionStrategies.protective_collar method with the details of each leg and then pass the result to the buy method.

    Select Language:
    protective_collar = OptionStrategies.protective_collar(self._symbol, call.strike, put.strike, expiry)
    self.buy(protective_collar, 1)

    Approach B: Create a list of Leg objects and then call the combo_market_order, combo_limit_order, or combo_leg_limit_order method.

    Select Language:
    legs = [
        Leg.create(call.symbol, -1),
        Leg.create(put.symbol, 1),
        Leg.create(chain.underlying.symbol, chain.underlying.symbol_properties.contract_multiplier)
    ]
    self.combo_market_order(legs, 1)

Strategy Payoff

This is a limited-profit-limited-loss strategy. The payoff is

CT=(STKC)+PT=(KPST)+PayoffT=(STS0CT+PT+C0P0)×mfee whereCT=Call value at time TPT=Put value at time TST=Underlying asset price at time TKC=Call strike priceKP=Put strike pricePayoffT=Payout total at time TS0=Underlying asset price when the trade openedC0=Call price when the trade opened (credit received)P0=Put price when the trade opened (debit paid)m=Contract multiplierT=Time of expiration

The following chart shows the payoff at expiration:

protective collar strategy payoff

The maximum profit is KCST+C0P0. It occurs when the underlying price is at or above the strike price of the call at expiration.

The maximum profit is STKP+C0P0. It occurs when the underlying price is at or below the strike price of the put at expiration.

If the Option is American Option, there is a risk of early assignment on the contract you sell.

Example

The following table shows the price details of the assets in the algorithm:

AssetPrice ($)Strike ($)
Call2.85845.00
Put6.00822.50
Underlying Equity at position opens833.17-
Underlying Equity at expiration843.25-

Therefore, the payoff is

CT=(STKC)+=(843.365845.00)+=0PT=(KPST)+=(822.50843.365)+=0PayoffT=(STS0CT+PT+C0P0)×mfee=(843.25833.170+0+2.856.00)×1001.00×3=690

So, the strategy gains $690.

The following algorithm implements a protective collar Option strategy:

Select Language:
class ProtectiveCollarOptionStrategy(QCAlgorithm):
    def initialize(self) -> None:
        self.set_start_date(2017, 4, 1)
        self.set_end_date(2017, 4, 23)
        self.set_cash(100000)
        
        equity = self.add_equity("GOOG", Resolution.MINUTE)
        option = self.add_option("GOOG", Resolution.MINUTE)
        self.symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().protective_collar(30, -1, -10))

    def on_data(self, data: Slice) -> None:
        # avoid extra orders
        if self.portfolio.invested: return

        # Get the OptionChain of the self.symbol
        chain = data.option_chains.get(self.symbol, None)
        if not chain: return

        # choose the furthest expiration date within 30 days from now on
        expiry = sorted(chain, key = lambda x: x.expiry)[-1].expiry
        # filter the call options contracts
        call = [x for x in chain if x.right == OptionRight.CALL and x.expiry == expiry]
        # filter the put options contracts
        put = [x for x in chain if x.right == OptionRight.PUT and x.expiry == expiry]

        if not call or not put: return

        # select the strike prices of call and put contracts
        call_strike = sorted(call, key = lambda x: x.strike)[-1].strike
        put_strike = sorted(put, key = lambda x: x.strike)[0].strike

        protective_collar = OptionStrategies.protective_collar(self.symbol, call_strike, put_strike, expiry)
        self.buy(protective_collar, 1)

    def on_end_of_day(self, symbol):
        if symbol.value == "GOOG":
            self.log(f"{self.time}::{symbol}::{self.securities[symbol].price}")

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: