Option Strategies

Long Call Butterfly

Introduction

The long call butterfly strategy is the combination of a bull call spread and a bear call spread. In the call butterfly, all of the calls should have the same underlying Equity, the same expiration date, and the same strike price distance between the ITM-ATM and OTM-ATM call pairs. The long call butterfly consists of a long ITM call, a long OTM call, and 2 short ATM calls. This strategy profits from low volatility in the underlying Equity price.

Implementation

Follow these steps to implement the long call butterfly strategy:

  1. In the Initializeinitialize method, set the start date, end date, cash, and Option universe.
  2. private Symbol _symbol;
    
    public override void Initialize()
    {
        SetStartDate(2017, 2, 1);
        SetEndDate(2017, 3, 5);
        SetCash(500000);
    
        UniverseSettings.Asynchronous = true;
        var option = AddOption("GOOG", Resolution.Minute);
        _symbol = option.Symbol;
        option.SetFilter(universe => universe.IncludeWeeklys().CallButterfly(30, 5));
    }
    def initialize(self) -> None:
        self.set_start_date(2017, 2, 1)
        self.set_end_date(2017, 3, 5)
        self.set_cash(500000)
    
        self.universe_settings.asynchronous = True
        option = self.add_option("GOOG", Resolution.MINUTE)
        self._symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().call_butterfly(30, 5))

    The CallSpreadcall_spread filter narrows the universe down to just the three contracts you need to form a long call butterfly.

  3. In the OnDataon_data method, select the contracts of the strategy legs.
  4. public override void OnData(Slice slice)
    {
        if (Portfolio.Invested ||
            !slice.OptionChains.TryGetValue(_symbol, out var chain))
        {
            return;
        }
    
        // Select the call Option contracts with the furthest expiry
        var expiry = chain.Max(x =x> x.Expiry);    
        var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call);
        if (calls.Count() == 0) return;
    
        // Select the ATM, ITM and OTM contracts from the remaining contracts
        var atmCall = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First();
        var itmCall = calls.OrderBy(x => x.Strike).SkipLast(1).Last();
        var otmCall = calls.Single(x => x.Strike == atmCall.Strike * 2 - itmCall.Strike);
    def on_data(self, slice: Slice) -> None:
        if self.portfolio.invested:
            return
    
        # Get the OptionChain.
        chain = slice.option_chains.get(self._symbol, None)
        if not chain:
            return
    
        # Get the furthest expiry date of the contracts.
        expiry = max([x.expiry for x in chain])
        
        # Select the call Option contracts with the furthest expiry.
        calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL]
        if len(calls) == 0:
            return
    
        # Select the target contracts.
        atm_call = sorted(calls, key=lambda x: abs(x.strike - chain.underlying.price))[0]
        itm_call = sorted(calls, key=lambda x: x.strike)[-2]
        otm_call = [x for x in calls if x.strike == atm_call.strike * 2 - itm_call.strike][0]
  5. In the OnDataon_data method, place the orders.
  6. Approach A: Call the OptionStrategies.ButterflyCallOptionStrategies.butterfly_call method with the details of each leg and then pass the result to the Buybuy method.

    var optionStrategy = OptionStrategies.ButterflyCall(_symbol, itmCall.Strike, atmCall.Strike, otmCall.Strike, expiry);
    Buy(optionStrategy, 1);
    option_strategy = OptionStrategies.butterfly_call(self._symbol, itm_call.strike, atm_call.strike, otm_call.strike, expiry)
    self.buy(option_strategy, 1)

    Approach B: Create a list of Leg objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.

    var legs = new List<Leg>()
        {
            Leg.Create(atmCall.Symbol, -2),
            Leg.Create(itmCall.Symbol, 1),
            Leg.Create(otmCall.Symbol, 1)
        };
    ComboMarketOrder(legs, 1);
    legs = [
        Leg.create(atm_call.symbol, -2),
        Leg.create(itm_call.symbol, 1),
        Leg.create(otm_call.symbol, 1)
    ]
    self.combo_market_order(legs, 1)

Strategy Payoff

The long call butterfly is a limited-reward-limited-risk strategy. The payoff is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & C^{ITM}_T & = & \textrm{ITM call value at time T}\\ & C^{ATM}_T & = & \textrm{ATM call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{OTM} & = & \textrm{OTM call strike price}\\ & K^{ITM} & = & \textrm{ITM call strike price}\\ & K^{ATM} & = & \textrm{ATM call strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{ITM}_0 & = & \textrm{ITM call value at position opening (debit paid)}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & C^{ATM}_0 & = & \textrm{OTM call value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$

The following chart shows the payoff at expiration:

Strategy payoff decomposition and analysis of long call butterfly

The maximum profit is $K^{ATM} - K^{ITM} + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is the same price at expiration as it was when opening the position and the payouts of the bull and bear call spreads are at their maximum.

The maximum loss is the net debit paid: $2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is less than ITM strike or greater than OTM strike at expiration.

If the Option is American Option, there is a risk of early assignment on the contracts you sell.

Example

The following table shows the price details of the assets in the long call butterfly:

AssetPrice ($)Strike ($)
OTM call4.90767.50
ATM call15.00800.00
ITM call41.00832.50
Underlying Equity at expiration829.08-

Therefore, the payoff is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ & = & (767.50-829.08)^{+}\\ & = & 0\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ & = & (832.50-829.08)^{+}\\ & = & 3.42\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ & = & (800.00-829.08)^{+}\\ & = & 0\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ & = & (0+3.42-0\times2-4.90-41.00+15.00\times2)\times100-1.00\times4\\ & = & -1252 \end{array} $$

So, the strategy loses $1,252.

The following algorithm implements a long call butterfly Option strategy:


You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: