Option Strategies
Long Call Butterfly
Introduction
The long call butterfly strategy is the combination of a bull call spread and a bear call spread. In the call butterfly, all of the calls should have the same underlying Equity, the same expiration date, and the same strike price distance between the ITM-ATM and OTM-ATM call pairs. The long call butterfly consists of a long ITM call, a long OTM call, and 2 short ATM calls. This strategy profits from low volatility in the underlying Equity price.
Implementation
Follow these steps to implement the long call butterfly strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
on_data
method, select the contracts of the strategy legs. - In the
OnData
on_data
method, place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 2, 1); SetEndDate(2017, 3, 5); SetCash(500000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().CallButterfly(30, 5)); }
def initialize(self) -> None: self.set_start_date(2017, 2, 1) self.set_end_date(2017, 3, 5) self.set_cash(500000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().call_butterfly(30, 5))
The CallSpread
call_spread
filter narrows the universe down to just the three contracts you need to form a long call butterfly.
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Select the call Option contracts with the furthest expiry var expiry = chain.Max(x =x> x.Expiry); var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call); if (calls.Count() == 0) return; // Select the ATM, ITM and OTM contracts from the remaining contracts var atmCall = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First(); var itmCall = calls.OrderBy(x => x.Strike).SkipLast(1).Last(); var otmCall = calls.Single(x => x.Strike == atmCall.Strike * 2 - itmCall.Strike);
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain. chain = slice.option_chains.get(self._symbol, None) if not chain: return # Get the furthest expiry date of the contracts. expiry = max([x.expiry for x in chain]) # Select the call Option contracts with the furthest expiry. calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL] if len(calls) == 0: return # Select the target contracts. atm_call = sorted(calls, key=lambda x: abs(x.strike - chain.underlying.price))[0] itm_call = sorted(calls, key=lambda x: x.strike)[-2] otm_call = [x for x in calls if x.strike == atm_call.strike * 2 - itm_call.strike][0]
Approach A: Call the OptionStrategies.ButterflyCall
OptionStrategies.butterfly_call
method with the details of each leg and then pass the result to the Buy
buy
method.
var optionStrategy = OptionStrategies.ButterflyCall(_symbol, itmCall.Strike, atmCall.Strike, otmCall.Strike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.butterfly_call(self._symbol, itm_call.strike, atm_call.strike, otm_call.strike, expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var legs = new List<Leg>() { Leg.Create(atmCall.Symbol, -2), Leg.Create(itmCall.Symbol, 1), Leg.Create(otmCall.Symbol, 1) }; ComboMarketOrder(legs, 1);
legs = [ Leg.create(atm_call.symbol, -2), Leg.create(itm_call.symbol, 1), Leg.create(otm_call.symbol, 1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The long call butterfly is a limited-reward-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & C^{ITM}_T & = & \textrm{ITM call value at time T}\\ & C^{ATM}_T & = & \textrm{ATM call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{OTM} & = & \textrm{OTM call strike price}\\ & K^{ITM} & = & \textrm{ITM call strike price}\\ & K^{ATM} & = & \textrm{ATM call strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{ITM}_0 & = & \textrm{ITM call value at position opening (debit paid)}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & C^{ATM}_0 & = & \textrm{OTM call value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is $K^{ATM} - K^{ITM} + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is the same price at expiration as it was when opening the position and the payouts of the bull and bear call spreads are at their maximum.
The maximum loss is the net debit paid: $2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0$. It occurs when the underlying price is less than ITM strike or greater than OTM strike at expiration.
If the Option is American Option, there is a risk of early assignment on the contracts you sell.
Example
The following table shows the price details of the assets in the long call butterfly:
Asset | Price ($) | Strike ($) |
---|---|---|
OTM call | 4.90 | 767.50 |
ATM call | 15.00 | 800.00 |
ITM call | 41.00 | 832.50 |
Underlying Equity at expiration | 829.08 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{OTM})^{+}\\ & = & (767.50-829.08)^{+}\\ & = & 0\\ C^{ITM}_T & = & (S_T - K^{ITM})^{+}\\ & = & (832.50-829.08)^{+}\\ & = & 3.42\\ C^{ATM}_T & = & (S_T - K^{ATM})^{+}\\ & = & (800.00-829.08)^{+}\\ & = & 0\\ P_T & = & (C^{OTM}_T + C^{ITM}_T - 2\times C^{ATM}_T + 2\times C^{ATM}_0 - C^{ITM}_0 - C^{OTM}_0)\times m - fee\\ & = & (0+3.42-0\times2-4.90-41.00+15.00\times2)\times100-1.00\times4\\ & = & -1252 \end{array} $$So, the strategy loses $1,252.
The following algorithm implements a long call butterfly Option strategy: