Universes
Future Options
Introduction
A Future Option universe lets you select a basket of Option contracts on the contracts in a Futures universe.
Create Universes
To add a universe of Future Option contracts, in the Initialize
initialize
method, define a Future universe and then pass the canonical Symbol
symbol
to the AddFutureOption
add_future_option
method.
UniverseSettings.Asynchronous = true; var future = AddFuture(Futures.Metals.Gold); future.SetFilter(0, 90); AddFutureOption(future.Symbol);
self.universe_settings.asynchronous = True future = self.add_future(Futures.Metals.GOLD) future.set_filter(0, 90) self.add_future_option(future.symbol)
The following table describes the AddFutureOption
add_future_option
method arguments:
Argument | Data Type | Description | Default Value |
---|---|---|---|
symbol | Symbol | The continuous Future contract Symbol. To view the supported assets in the US Future Options dataset, see Supported Assets. | |
optionFilter option_filter | Func<OptionFilterUniverse, OptionFilterUniverse> Callable[[OptionFilterUniverse], OptionFilterUniverse] | A function that selects Future Option contracts | null None |
To override the default pricing model of the Option, set a pricing model in a security initializer.
// In Initialize var seeder = SecuritySeeder.Null; SetSecurityInitializer(new MySecurityInitializer(BrokerageModel, seeder, this)); // Outside of the algorithm class class MySecurityInitializer : BrokerageModelSecurityInitializer { private QCAlgorithm _algorithm; public MySecurityInitializer(IBrokerageModel brokerageModel, ISecuritySeeder securitySeeder, QCAlgorithm algorithm) : base(brokerageModel, securitySeeder) { _algorithm = algorithm; } public override void Initialize(Security security) { // First, call the superclass definition // This method sets the reality models of each security using the default reality models of the brokerage model base.Initialize(security); // Next, set the price model if (security.Type == SecurityType.FutureOption) // Option type { security.PriceModel = OptionPriceModels.CrankNicolsonFD(); } } }
# In Initialize seeder = SecuritySeeder.NULL self.set_security_initializer(MySecurityInitializer(self.brokerage_model, seeder, self)) # Outside of the algorithm class class MySecurityInitializer(BrokerageModelSecurityInitializer): def __init__(self, brokerage_model: IBrokerageModel, security_seeder: ISecuritySeeder) -> None: super().__init__(brokerage_model, security_seeder) def initialize(self, security: Security) -> None: # First, call the superclass definition # This method sets the reality models of each security using the default reality models of the brokerage model super().initialize(security) # Next, set the price model if security.type == SecurityType.FUTURE_OPTION: # Option type security.price_model = OptionPriceModels.crank_nicolson_fd()
To override the initial guess of implied volatility, set and warm up the underlying volatility model.
Filter Contracts
By default, LEAN subscribes to the Option contracts that have the following characteristics:
- Standard type (weeklies and non-standard contracts are not available)
- Within 1 strike price of the underlying asset price
- Expire within 35 days
To adjust the universe of contracts, set a filter. The filter usually runs at every time step in your algorithm. When the filter selects a contract that isn't currently in your universe, LEAN adds the new contract data to the next Slice
that it passes to the OnData
on_data
method.
To set a contract filter, in the Initialize
initialize
method, pass a filter function to the AddFutureOption
add_future_option
method. The following table describes the available filter techniques:
AddFutureOption(future.Symbol, optionFilterUniverse => optionFilterUniverse.Strikes(-1, 1));
self.add_future_option(future.symbol, lambda option_filter_universe: option_filter_universe.strikes(-1, 1))
The following table describes the filter methods of the OptionFilterUniverse
class:
Strikes(int minStrike, int maxStrike) strikes(min_strike: int, max_strike: int) Selects contracts that are within |
CallsOnly() calls_only() Selects call contracts. |
PutsOnly() puts_only() Selects put contracts. |
StandardsOnly() standards_only() Selects standard contracts. |
IncludeWeeklys() include_weeklys() Selects non-standard weeklys contracts. |
WeeklysOnly() weeklys_only() Selects weekly contracts. |
FrontMonth() front_month() Selects the front month contract. |
BackMonths() back_months() Selects the non-front month contracts. |
BackMonth() back_month() Selects the back month contracts. |
Expiration(int minExpiryDays, int maxExpiryDays) expiration(min_expiryDays: int, max_expiryDays: int) Selects contracts that expire within a range of dates relative to the current day. |
Contracts(IEnumerable<Symbol> contracts) contracts(contracts: List[Symbol]) Selects a list of contracts. |
Contracts(Func<IEnumerable<Symbol>, IEnumerable< Symbol>> contractSelector) contracts(contract_selector: Callable[[List[Symbol]], List[Symbol]]) Selects contracts that a selector function selects. |
The preceding methods return an OptionFilterUniverse
, so you can chain the methods together.
AddFutureOption(future.Symbol, optionFilterUniverse => optionFilterUniverse.Strikes(-1, 1).CallsOnly());
self.add_future_option(future.symbol, lambda option_filter_universe: option_filter_universe.strikes(-1, 1).calls_only())
To perform thorough filtering on the OptionFilterUniverse
, define an isolated filter method.
# In Initialize AddFutureOption(future.Symbol, Selector); private OptionFilterUniverse Selector(OptionFilterUniverse optionFilterUniverse) { var symbols = optionFilterUniverse.PutsOnly(); var strike = symbols.Select(symbol => symbol.ID.StrikePrice).Min(); symbols = symbols.Where(symbol => symbol.ID.StrikePrice == strike); return optionFilterUniverse.Contracts(symbols); }
# In Initialize self.add_future_option(future.Symbol, self._contract_selector) def _contract_selector(self, option_filter_universe: OptionFilterUniverse) -> OptionFilterUniverse: symbols = option_filter_universe.PutsOnly() strike = min([symbol.id.strike_price for symbol in symbols]) symbols = [symbol for symbol in symbols if symbol.id.strike_price == strike] return option_filter_universe.contracts(symbols)
Some of the preceding filter methods only set an internal enumeration in the OptionFilterUniverse
that it uses later on in the filter process. This subset of filter methods don't immediately reduce the number of contract Symbol
objects in the OptionFilterUniverse
.
Navigate Option Chains
OptionChain
objects represent an entire chain of Option contracts for a single underlying security.
To get the OptionChain
, loop through the OptionChains
option_chains
property. After you get the OptionChain
, you can sort and filter the Option contracts in the chain.
public override void OnData(Slice slice) { foreach (var kvp in slice.OptionChains) { var optionChain = kvp.Value; // Example: Find 5 put contracts that are closest to at-the-money (ATM) and have the farthest expiration var contracts = optionChain .Where(x => x.Right == OptionRight.Put) .OrderByDescending(x => x.Expiry) .ThenBy(x => Math.Abs(chain.Underlying.Price - x.Strike)) .Take(5); // Select the contract with the delta closest to -0.5 var contract = contracts.OrderBy(x => Math.Abs(-0.5m - x.Greeks.Delta)).FirstOrDefault(); } }
def on_data(self, slice: Slice) -> None: for _, option_chain in slice.option_chains.items(): # Example: Find 5 put contracts that are closest to at-the-money (ATM) and have the farthest expiration contracts = [x for x in option_chain if x.right == OptionRight.PUT] contracts = sorted(sorted(contracts, \ key=lambda x: abs(option_chain.underlying.price - x.strike)), \ key=lambda x: x.expiry, reverse=True)[:5] # Select the contract with the delta closest to -0.5 contract = sorted(contracts, key=lambda x: abs(-0.5 - x.greeks.delta))[0]
You can also iterate through the FuturesChains
futures_chains
first.
public override void OnData(Slice slice) { foreach (var kvp in slice.FuturesChains) { var continuousContractSymbol = kvp.Key; var futuresChain = kvp.Value; // Select a Future Contract and create its canonical FOP Symbol var futuresContract = futuresChain.First(); var canonicalFOPSymbol = QuantConnect.Symbol.CreateCanonicalOption(futuresContract.Symbol); if (slice.OptionChains.TryGetValue(canonicalFOPSymbol, out var fopChain)) { foreach (var contract in fopChain) { // } } } }
def on_data(self, slice: Slice) -> None: for continuous_future_symbol, futures_chain in slice.futures_chains.items(): # Select a Future Contract and create its canonical FOP Symbol futures_contract = [contract for contract in futures_chain][0] canonical_fop_symbol = Symbol.create_canonical_option(futures_contract.symbol) fop_chain = slice.option_chains.get(canonical_fop_symbol) if fop_chain: for contract in fop_chain: pass
OptionChain
objects have the following properties:
Examples
The following examples demonstrate some common Future Option universes.
Example 1: 0DTE Contracts
0DTE Options are Option contracts that expire on the same day you trade them. The following algorithm selects 0DTE Future Option contracts for the E-mini S&P 500 that fall within 3 strikes of the underlying price.
public class ZeroDTEFutureOptionUniverseAlgorithm : QCAlgorithm { public override void Initialize() { var future = AddFuture(Futures.Indices.SP500EMini); future.SetFilter(0, 90); AddFutureOption( future.Symbol, u => u.IncludeWeeklys().Expiration(0, 0).Strikes(-3, 3) ); } }
class ZeroDTEFutureOptionUniverseAlgorithm(QCAlgorithm): def initialize(self): future = self.add_future(Futures.Indices.SP_500_E_MINI) future.set_filter(0, 90) self.add_future_option( future.symbol, lambda u: u.include_weeklys().expiration(0, 0).strikes(-3, 3) )