Option Strategies
Short Put Backspread
Introduction
Short Put Backspread, consists of short 1 higher-strike put and short 2 lower-strike puts. It is a combination of a bear put spread and a short put with the same strike price as the lower-strike leg the put spread. All puts have the same underlying Equity and expiration date. This strategy profits from stable, consistent price of the underlying asset. For instance, the underlying price stays at its current price.
Implementation
Follow these steps to implement the short put backspread strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. You can use thePutSpread
put_spread
helper method in option universe filtering, since a put backspread consists of the same contracts as a put spread. - In the
OnData
on_data
method, select the expiration and strikes of the contracts in the strategy legs. - In the
OnData
on_data
method, select the contracts and place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 4, 1); SetEndDate(2017, 4, 22); SetCash(1000000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().PutSpread(20, 5)); }
def initialize(self) -> None: self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 22) self.set_cash(1000000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().put_spread(20, 5))
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Select the put Option contracts with the furthest expiry var expiry = chain.Max(x => x.Expiry); var puts = chain.Where(x => x.Expiry == expiry); if (puts.Count() == 0) return; // Select the strike prices from the remaining contracts var strikes = puts.Select(x => x.Strike).Distinct().OrderBy(x => x).ToList(); if (strikes.Count < 2) { return; } var lowStrike = strikes[0]; var highStrike = strikes[1];
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select the put Option contracts with the furthest expiry expiry = max([x.expiry for x in chain]) puts = [i for i in chain if i.expiry == expiry] if not puts: return # Select the strike prices from the remaining contracts strikes = sorted(set(x.strike for x in puts)) if len(strikes) < 2: return low_strike = strikes[0] high_strike = strikes[1]
Approach A: Call the OptionStrategies.ShortPutBackspread
OptionStrategies.short_put_backspread
method with the details of each leg and then pass the result to the Buy
buy
method.
var optionStrategy = OptionStrategies.ShortPutBackspread(_symbol, highStrike, lowStrike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.short_put_backspread(self._symbol, high_strike, low_strike, expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var lowStrikePut = puts.Single(x => x.Strike == lowStrike); var highStrikePut = puts.Single(x => x.Strike == highStrike); var legs = new List<Leg>() { Leg.Create(lowStrikePut.Symbol, -2), Leg.Create(highStrikePut.Symbol, 1) }; ComboMarketOrder(legs, 1, true);
low_strike_put = next(filter(lambda x: x.strike == low_strike, puts)) high_strike_put = next(filter(lambda x: x.strike == high_strike, puts)) legs = [ Leg.create(low_strike_put.symbol, -2), Leg.create(high_strike_put.symbol, 1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The short put backspread is an unlimited-profit-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} P^{low}_T & = & (K^{low} - S_T)^{+}\\ P^{high}_T & = & (K^{high} - S_T)^{+}\\ Payoff_T & = & (P^{high}_T - P^{high}_0 - P^{low}_T \times 2 + P^{low}_0 \times 2)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & P^{low}_T & = & \textrm{Lower-strike put value at time T}\\ & P^{high}_T & = & \textrm{Higher-strike put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{low} & = & \textrm{Lower-strike put strike price}\\ & K^{high} & = & \textrm{Higher-strike put strike price}\\ & P^{low}_0 & = & \textrm{Lower-strike put value at position opening (credit received)}\\ & P^{high}_0 & = & \textrm{Higher-strike put value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is $K^{high} - K^{low} - P^{high}_0 + P^{low}_0 \times 2$, which occurs when the underlying price is exactly at the lower strike at expiry.
The maximum loss is $P^{low}_0 \times 2 - P^{high}_0 - S_T$, which occurs when the underlying price drops to zero.
If the Option is American Option, there is a risk of early assignment on the contract you sell.
Example
The following table shows the price details of the assets in the algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
Lower-Strike put | 4.70 | 825.00 |
Higher-strike put | 10.90 | 835.00 |
Underlying Equity at expiration | 843.19 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} P^{low}_T & = & (K^{low} - S_T)^{+}\\ & = & (825.00-843.19)^{+}\\ & = & 0.00\\ P^{high}_T & = & (K^{high} - S_T)^{+}\\ & = & (835.00-843.19)^{+}\\ & = & 0.00\\ Payoff_T & = & (P^{high}_T - P^{high}_0 - P^{low}_T \times 2 + P^{low}_0 \times 2)\times m - fee\\ & = & (0 - 10.90 - 0.00\times2 + 4.70\times2)\times100-2.30\\ & = & -152.30\\ \end{array} $$So, the strategy loses $152.30.
The following algorithm implements a short put backspread Option strategy: