Option Strategies
Long Iron Butterfly
Introduction
The Long Iron Butterfly is an option strategy which involves four Option contracts. All the contracts have the same underlying stock and expiration, but the order of strike prices for the four contracts is $A>B>C$. The following table describes the strike price of each contract:
Position | Strike |
---|---|
1 OTM call | $A$ |
-1 ATM call | $B$ |
-1 ATM put | $B$ |
1 OTM put | $C=B-(A-B)$ |
The long iron butterfly consists of selling an OTM call, selling an OTM put, buying an ATM call, and buying an ATM put. This strategy profits from a decrease in price movement (implied volatility).
Implementation
Follow these steps to implement the long iron butterfly strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
on_data
method, select the contracts in the strategy legs. - In the
OnData
on_data
method, select the contracts and place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 4, 1); SetEndDate(2017, 5, 10); SetCash(100000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().IronButterfly(30, 5)); }
def initialize(self) -> None: self.set_start_date(2017, 4, 1) self.set_end_date(2017, 5, 10) self.set_cash(100000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().iron_butterfly(30, 5));
The IronButterfly
iron_butterfly
filter narrows the universe down to just the four contracts you need to form a long iron butterfly.
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Select expiry var expiry = chain.Max(x => x.Expiry); // Separate the call and put contracts var calls = chain.Where(x => x.Right == OptionRight.Call && x.Expiry == expiry); var puts = chain.Where(x => x.Right == OptionRight.Put && x.Expiry == expiry); if (calls.Count() == 0 || puts.Count() == 0) return; // Get the ATM and OTM strike prices var atmStrike = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First().Strike; var otmPutStrike = puts.Min(x => x.Strike); var otmCallStrike = 2 * atmStrike - otmPutStrike;
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select expiry expiry = max([x.expiry for x in chain]) # Separate the call and put contracts calls = [i for i in chain if i.right == OptionRight.CALL and i.expiry == expiry] puts = [i for i in chain if i.right == OptionRight.PUT and i.expiry == expiry] if not calls or not puts: return # Get the ATM and OTM strike prices atm_strike = sorted(calls, key = lambda x: abs(chain.underlying.price - x.strike))[0].strike otm_put_strike = min([x.strike for x in puts]) otm_call_strike = 2 * atm_strike - otm_put_strike
Approach A: Call the OptionStrategies.IronButterfly
OptionStrategies.iron_butterfly
method with the details of each leg and then pass the result to the Buy
buy
method.
var ironButterfly = OptionStrategies.IronButterfly(_symbol, otmPutStrike, atmStrike, otmCallStrike, expiry); Buy(ironButterfly, 2);
iron_butterfly = OptionStrategies.iron_butterfly(self._symbol, otm_put_strike, atm_strike, otm_call_strike, expiry) self.buy(iron_butterfly, 2)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
// Select the contracts var atmCall = calls.Single(x => x.Strike == atmStrike); var atmPut = puts.Single(x => x.Strike == atmStrike); var otmCall = calls.Single(x => x.Strike == otmCallStrike); var otmPut = puts.Single(x => x.Strike == otmPutStrike); var legs = new List<Leg>() { Leg.Create(atmCall.Symbol, -1), Leg.Create(atmPut.Symbol, -1), Leg.Create(otmCall.Symbol, 1), Leg.Create(otmPut.Symbol, 1) }; ComboMarketOrder(legs, 1);
# Select the contracts atm_call = [x for x in calls if x.strike == atm_strike][0] atm_put = [x for x in puts if x.strike == atm_strike][0] otm_call = [x for x in calls if x.strike == otm_call_strike][0] otm_put = [x for x in puts if x.strike == otm_put_strike][0] legs = [ Leg.create(atm_call.symbol, -1), Leg.create(atm_put.symbol, -1), Leg.create(otm_call.symbol, 1), Leg.create(otm_put.symbol, 1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The long call butterfly is a limited-reward-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^C_{OTM})^{+}\\ C^{ATM}_T & = & (S_T - K^C_{ATM})^{+}\\ P^{OTM}_T & = & (K^P_{OTM} - S_T)^{+}\\ P^{ATM}_T & = & (K^P_{ATM} - S_T)^{+}\\ P_T & = & (C^{OTM}_T + P^{OTM}_T - C^{ATM}_T - P^{ATM}_T - C^{OTM}_0 - P^{OTM}_0 + C^{ATM}_0 + P^{ATM}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & C^{ATM}_T & = & \textrm{ATM call value at time T}\\ & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & P^{ATM}_T & = & \textrm{ATM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^C_{OTM} & = & \textrm{OTM call strike price}\\ & K^C_{ATM} & = & \textrm{ATM call strike price}\\ & K^P_{OTM} & = & \textrm{OTM put strike price}\\ & K^P_{ATM} & = & \textrm{ATM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & C^{ATM}_0 & = & \textrm{ATM call value at position opening (credit received)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (debit paid)}\\ & P^{ATM}_0 & = & \textrm{ATM put value at position opening (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is the net credit received, $C^{ATM}_0 + P^{ATM}_0 - C^{OTM}_0 - P^{OTM}_0$. It occurs when the underlying price stays the same as when you opened the trade.
The maximum loss is $K^C_{OTM} - K^C_{ATM} - C^{ATM}_0 - P^{ATM}_0 + C^{OTM}_0 + P^{OTM}_0$. It occurs when the underlying price is below the OTM put strike price or above the OTM call strike price at expiration.
If the Option is American Option, there is a risk of early assignment on the contracts you sell.
Example
The following table shows the price details of the assets in the algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
OTM call | 1.35 | 855.00 |
OTM put | 1.50 | 810.00 |
ATM call | 10.30 | 832.50 |
ATM put | 9.50 | 832.50 |
Underlying Equity at expiration | 843.25 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^C_{OTM})^{+}\\ & = & (843.25-855.00)^{+}\\ & = & 0\\ C^{ATM}_T & = & (S_T - K^C_{ATM})^{+}\\ & = & (843.25-832.50)^{+}\\ & = & 10.75\\ P^{OTM}_T & = & (K^P_{OTM} - S_T)^{+}\\ & = & (810.00-843.25)^{+}\\ & = & 0\\ P^{ATM}_T & = & (K^P_{ATM} - S_T)^{+}\\ & = & (832.50.00-843.25)^{+}\\ & = & 0\\ P_T & = & (C^{ATM}_T + P^{ATM}_T - C^{OTM}_T - P^{OTM}_T - C^{ATM}_0 - P^{ATM}_0 + C^{OTM}_0 + P^{OTM}_0)\times m - fee\\ & = & (10.75+0-0-0-10.30-9.50+1.35+1.50)\times100-1\times4\\ & = & -624 \end{array} $$So, the strategy losses $624.
The following algorithm implements a long iron butterfly Option strategy: