Option Strategies
Protective Call
Introduction
A Protective Call consists of a short position in a stock and a long position in a call Option for the same amount of stock. Protective calls aim to hedge the short position of a stock with a long ATM or slightly OTM call Option. At any time for American Options or at expiration for European Options, if the stock moves below the strike price, the Option contract becomes worthless but the short position acquires an unrealized gain. If the underlying price moves above the strike, you can exercise the Options contract and receive the underlying Equity, which closes your short position.
Implementation
Follow these steps to implement the protective call strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Options universe. - In the
OnData
on_data
method, select the Option contract. - In the
OnData
on_data
method, place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2014, 1, 1); SetEndDate(2014, 3, 1); SetCash(100000); UniverseSettings.Asynchronous = true; var option = AddOption("IBM"); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().NakedCall(30, 0)); }
def initialize(self) -> None: self.set_start_date(2014, 1, 1) self.set_end_date(2014, 3, 1) self.set_cash(100000) self.universe_settings.asynchronous = True option = self.add_option("IBM") self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().naked_call(30, 0))
The NakedCall
naked_call
filter narrows the universe down to just the one contract you need to form a protective call.
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) return; // Find ATM call with the farthest expiry var expiry = chain.Max(x => x.Expiry); var atmCall = chain .Where(x => x.Right == OptionRight.Call && x.Expiry == expiry) .OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)) .FirstOrDefault();
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return chain = slice.option_chains.get(self._symbol) if not chain: return # Find ATM call with the farthest expiry expiry = max([x.expiry for x in chain]) call_contracts = sorted([x for x in chain if x.right == OptionRight.CALL and x.expiry == expiry], key=lambda x: abs(chain.underlying.price - x.strike)) if not call_contracts: return atm_call = call_contracts[0]
Approach A: Call the OptionStrategies.ProtectiveCall
OptionStrategies.protective_call
method with the details of each leg and then pass the result to the Buy
buy
method.
var protectiveCall = OptionStrategies.ProtectiveCall(_symbol, atmCall.Strike, expiry); Buy(protectiveCall, 1);
protective_call = OptionStrategies.protective_call(self._symbol, atm_call.strike, expiry) self.buy(protective_call, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var legs = new List<Leg>() { Leg.Create(atmCall.Symbol, 1), Leg.Create(chain.Underlying.Symbol, -chain.Underlying.SymbolProperties.ContractMultiplier) }; ComboMarketOrder(legs, 1);
legs = [ Leg.create(atm_call.symbol, 1), Leg.create(chain.underlying.symbol, -chain.underlying.symbol_properties.contract_multiplier) ] self.combo_market_order(legs, 1)
Strategy Payoff
The payoff of the strategy is
$$ \begin{array}{rcll} C^{K}_T & = & (S_T - K)^{+}\\ P_T & = & (S_0 - S_T + C^{K}_T - C^{K}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{K}_T & = & \textrm{Call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K & = & \textrm{Call strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & S_0 & = & \textrm{Underlying asset price when the trade opened}\\ & C^{K}_0 & = & \textrm{Call price when the trade opened (credit received)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is $S_0 - C^{K}_0$, which occurs when the underlying price is $0$.
The maximum loss is $S_0 - K - C^{K}_0$, which occurs when the underlying price is above the strike price.
Example
The following table shows the price details of the assets in the algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
Call | 3.50 | 185.00 |
Underlying Equity at start of the trade | 186.94 | - |
Underlying Equity at expiration | 190.01 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{K}_T & = & (S_T - K)^{+}\\ & = & (190.01 - 185)^{+}\\ & = & 5.01\\ P_T & = & (S_0 - S_T + C^{K}_T - C^{K}_0)\times m - fee\\ & = & (186.94 - 190.01 + 5.01 - 3.50)\times m - fee\\ & = & -1.56 \times 100 - 2\\ & = & -158 \end{array} $$So, the strategy loses $158.
The following algorithm implements a protective call Option strategy: