Option Strategies

Short Iron Butterfly

Introduction

The Short Iron Butterfly is an option strategy which involves four Option contracts. All the contracts have the same underlying stock and expiration, but the order of strike prices for the four contracts is $A>B>C$. The following table describes the strike price of each contract:

PositionStrike
1 OTM call $A$
-1 ATM call $B$
-1 ATM put $B$
1 OTM put $C=B-(A-B)$

The short call butterfly consists of buying an OTM call, buying an OTM put, selling an ATM call, and selling an ATM put. This strategy profits from an increase in price movement (implied volatility) and from time decay value since ATM options decay sharper.

Implementation

Follow these steps to implement the short iron butterfly strategy:

  1. In the Initializeinitialize method, set the start date, end date, cash, and Option universe.
  2. private Symbol _symbol;
    
    public override void Initialize()
    {
        SetStartDate(2017, 4, 1);
        SetEndDate(2017, 5, 10);
        SetCash(100000);
    
        UniverseSettings.Asynchronous = true;
        var option = AddOption("GOOG", Resolution.Minute);
        _symbol = option.Symbol;
        option.SetFilter(universe => universe.IncludeWeeklys().IronButterfly(30, 5));
    }
    def initialize(self) -> None:
        self.set_start_date(2017, 4, 1)
        self.set_end_date(2017, 5, 10)
        self.set_cash(100000)
    
        self.universe_settings.asynchronous = True
        option = self.add_option("GOOG", Resolution.MINUTE)
        self._symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().iron_butterfly(30, 5));

    The IronButterflyiron_butterfly filter narrows the universe down to just the four contracts you need to form a short iron butterly.

  3. In the OnDataon_data method, select the contracts in the strategy legs.
  4. public override void OnData(Slice slice)
    {
        if (Portfolio.Invested ||
            !slice.OptionChains.TryGetValue(_symbol, out var chain))
        {
            return;
        }
    
        // Select expiry
        var expiry = chain.Max(x => x.Expiry);
    
        // Separate the call and put contracts
        var calls = chain.Where(x => x.Right == OptionRight.Call  && x.Expiry == expiry);
        var puts = chain.Where(x => x.Right == OptionRight.Put && x.Expiry == expiry);
        if (calls.Count() == 0 || puts.Count() == 0) return;
    
        // Get the ATM and OTM strike prices
        var atmStrike = calls.OrderBy(x => Math.Abs(x.Strike - chain.Underlying.Price)).First().Strike;
        var otmPutStrike = puts.Min(x => x.Strike);
        var otmCallStrike = 2 * atmStrike - otmPutStrike;
    def on_data(self, slice: Slice) -> None:
        if self.portfolio.invested:
            return
    
        # Get the OptionChain
        chain = slice.option_chains.get(self._symbol, None)
        if not chain:
            return
    
        # Select expiry
        expiry = max([x.expiry for x in chain])
    
        # Separate the call and put contracts
        calls = [i for i in chain if i.right == OptionRight.CALL and i.expiry == expiry]
        puts = [i for i in chain if i.right == OptionRight.PUT and i.expiry == expiry]
        if not calls or not puts:
            return
    
        # Get the ATM and OTM strike prices
        atm_strike = sorted(calls, key = lambda x: abs(chain.underlying.price - x.strike))[0].strike
        otm_put_strike = min([x.strike for x in puts])
        otm_call_strike = 2 * atm_strike - otm_put_strike
  5. In the OnDataon_data method, select the contracts and place the orders.
  6. Approach A: Call the OptionStrategies.ShortIronButterflyOptionStrategies.short_iron_butterfly method with the details of each leg and then pass the result to the Buybuy method.

    var shortIronButterfly = OptionStrategies.ShortIronButterfly(_symbol, otmPutStrike, atmStrike, otmCallStrike, expiry);
    Buy(shortIronButterfly, 2);
    short_iron_butterfly = OptionStrategies.short_iron_butterfly(self._symbol, otm_put_strike, atm_strike, otm_call_strike, expiry)
    self.buy(short_iron_butterfly, 2)

    Approach B: Create a list of Leg objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.

    // Select the contracts
    var atmCall = calls.Single(x => x.Strike == atmStrike);
    var atmPut = puts.Single(x => x.Strike == atmStrike);
    var otmCall = calls.Single(x => x.Strike == otmCallStrike);
    var otmPut = puts.Single(x => x.Strike == otmPutStrike);
    
    var legs = new List<Leg>()
        {
            Leg.Create(atmCall.Symbol, 1),
            Leg.Create(atmPut.Symbol, 1),
            Leg.Create(otmCall.Symbol, -1),
            Leg.Create(otmPut.Symbol, -1)
        };
    ComboMarketOrder(legs, 1);
    # Select the contracts
    atm_call = [x for x in calls if x.strike == atm_strike][0]
    atm_put = [x for x in puts if x.strike == atm_strike][0]
    otm_call = [x for x in calls if x.strike == otm_call_strike][0]
    otm_put = [x for x in puts if x.strike == otm_put_strike][0]
    
    legs = [
        Leg.create(atm_call.symbol, 1),
        Leg.create(atm_put.symbol, 1),
        Leg.create(otm_call.symbol, -1),
        Leg.create(otm_put.symbol, -1)
    ]
    self.combo_market_order(legs, 1)

Strategy Payoff

The short iron butterfly is a limited-reward-limited-risk strategy. The payoff is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^C_{OTM})^{+}\\ C^{ATM}_T & = & (S_T - K^C_{ATM})^{+}\\ P^{OTM}_T & = & (K^P_{OTM} - S_T)^{+}\\ P^{ATM}_T & = & (K^P_{ATM} - S_T)^{+}\\ P_T & = & (C^{ATM}_T + P^{ATM}_T - C^{OTM}_T - P^{OTM}_T - C^{ATM}_0 - P^{ATM}_0 + C^{OTM}_0 + P^{OTM}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & C^{ATM}_T & = & \textrm{ATM call value at time T}\\ & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & P^{ATM}_T & = & \textrm{ATM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^C_{OTM} & = & \textrm{OTM call strike price}\\ & K^C_{ATM} & = & \textrm{ATM call strike price}\\ & K^P_{OTM} & = & \textrm{OTM put strike price}\\ & K^P_{ATM} & = & \textrm{ATM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (credit received)}\\ & C^{ATM}_0 & = & \textrm{ATM call value at position opening (debit paid)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (credit received)}\\ & P^{ATM}_0 & = & \textrm{ATM put value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$

The following chart shows the payoff at expiration:

Strategy payoff decomposition and analysis of short iron butterfly

The maximum profit is $K^C_{OTM} - K^C_{ATM} - C^{ATM}_0 - P^{ATM}_0 + C^{OTM}_0 + P^{OTM}_0$. It occurs when the underlying price is below the OTM put strike price or above the OTM call strike price at expiration.

The maximum loss is the net debit paid, $C^{OTM}_0 + P^{OTM}_0 - C^{ATM}_0 - P^{ATM}_0$. It occurs when the underlying price stays the same as when you opened the trade.

If the Option is American Option, there is a risk of early assignment on the contracts you sell.

Example

The following table shows the price details of the assets in the algorithm:

AssetPrice ($)Strike ($)
OTM call2.35855.00
OTM put2.75810.00
ATM call8.10832.50
ATM put7.40832.50
Underlying Equity at expiration843.25-

Therefore, the payoff is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^C_{OTM})^{+}\\ & = & (843.25-855.00)^{+}\\ & = & 0\\ C^{ATM}_T & = & (S_T - K^C_{ATM})^{+}\\ & = & (843.25-832.50)^{+}\\ & = & 10.75\\ P^{OTM}_T & = & (K^P_{OTM} - S_T)^{+}\\ & = & (810.00-843.25)^{+}\\ & = & 0\\ P^{ATM}_T & = & (K^P_{ATM} - S_T)^{+}\\ & = & (832.50.00-843.25)^{+}\\ & = & 0\\ P_T & = & (C^{OTM}_T + P^{OTM}_T - C^{ATM}_T - P^{ATM}_T - C^{OTM}_0 - P^{OTM}_0 + C^{ATM}_0 + P^{ATM}_0)\times m - fee\\ & = & (0+0-10.75-0-2.35-2.75+8.10+7.40)\times100-1\times4\\ & = & -39 \end{array} $$

So, the strategy losses $39.

The following algorithm implements a short iron butterfly Option strategy:

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: