Supported Indicators
Stochastic
Introduction
This indicator computes the Slow Stochastics %K and %D. The Fast Stochastics %K is is computed by (Current Close Price - Lowest Price of given Period) / (Highest Price of given Period - Lowest Price of given Period) multiplied by 100. Once the Fast Stochastics %K is calculated the Slow Stochastic %K is calculated by the average/smoothed price of of the Fast %K with the given period. The Slow Stochastics %D is then derived from the Slow Stochastics %K with the given period.
To view the implementation of this indicator, see the LEAN GitHub repository.
Using STO Indicator
To create an automatic indicators for Stochastic
, call the STO
helper method from the QCAlgorithm
class. The STO
method creates a Stochastic
object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initialize
initialize
method.
public class StochasticAlgorithm : QCAlgorithm { private Symbol _symbol; private Stochastic _sto; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _sto = STO(_symbol, 20, 10, 20); } public override void OnData(Slice data) { if (_sto.IsReady) { // The current value of _sto is represented by itself (_sto) // or _sto.Current.Value Plot("Stochastic", "sto", _sto); // Plot all properties of sto Plot("Stochastic", "faststoch", _sto.FastStoch); Plot("Stochastic", "stochk", _sto.StochK); Plot("Stochastic", "stochd", _sto.StochD); } } }
class StochasticAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._sto = self.sto(self._symbol, 20, 10, 20) def on_data(self, slice: Slice) -> None: if self._sto.is_ready: # The current value of self._sto is represented by self._sto.current.value self.plot("Stochastic", "sto", self._sto.current.value) # Plot all attributes of self._sto self.plot("Stochastic", "fast_stoch", self._sto.fast_stoch.current.value) self.plot("Stochastic", "stoch_k", self._sto.stoch_k.current.value) self.plot("Stochastic", "stoch_d", self._sto.stoch_d.current.value)
The following reference table describes the STO
method:
sto(symbol, period, k_period, d_period, resolution=None, selector=None)
[source]Creates a new Stochastic indicator.
- symbol (Symbol) — The symbol whose stochastic we seek
- period (int) — The period of the stochastic. Normally 14
- k_period (int) — The sum period of the stochastic. Normally 14
- d_period (int) — The sum period of the stochastic. Normally 3
- resolution (Resolution, optional) — The resolution.
- selector (Callable[IBaseData, TradeBar], optional) — Selects a value from the BaseData to send into the indicator, if null defaults to casting the input value to a TradeBar
Stochastic indicator for the requested symbol.
STO(symbol, period, kPeriod, dPeriod, resolution=None, selector=None)
[source]Creates a new Stochastic indicator.
- symbol (Symbol) — The symbol whose stochastic we seek
- period (Int32) — The period of the stochastic. Normally 14
- kPeriod (Int32) — The sum period of the stochastic. Normally 14
- dPeriod (Int32) — The sum period of the stochastic. Normally 3
- resolution (Resolution, optional) — The resolution.
- selector (Func<IBaseData, TradeBar>, optional) — Selects a value from the BaseData to send into the indicator, if null defaults to casting the input value to a TradeBar
Stochastic indicator for the requested symbol.
If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.
For more information about the selector argument, see Alternative Price Fields.
For more information about plotting indicators, see Plotting Indicators.
You can manually create a Stochastic
indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.
Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Update
update
method with a TradeBar
or QuoteBar
. The indicator will only be ready after you prime it with enough data.
public class StochasticAlgorithm : QCAlgorithm { private Symbol _symbol; private Stochastic _sto; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _sto = new Stochastic(20, 10, 20); } public override void OnData(Slice data) { if (data.Bars.TryGetValue(_symbol, out var bar)) { _sto.Update(bar); } if (_sto.IsReady) { // The current value of _sto is represented by itself (_sto) // or _sto.Current.Value Plot("Stochastic", "sto", _sto); // Plot all properties of sto Plot("Stochastic", "faststoch", _sto.FastStoch); Plot("Stochastic", "stochk", _sto.StochK); Plot("Stochastic", "stochd", _sto.StochD); } } }
class StochasticAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._sto = Stochastic(20, 10, 20) def on_data(self, slice: Slice) -> None: bar = slice.bars.get(self._symbol) if bar: self._sto.update(bar) if self._sto.is_ready: # The current value of self._sto is represented by self._sto.current.value self.plot("Stochastic", "sto", self._sto.current.value) # Plot all attributes of self._sto self.plot("Stochastic", "fast_stoch", self._sto.fast_stoch.current.value) self.plot("Stochastic", "stoch_k", self._sto.stoch_k.current.value) self.plot("Stochastic", "stoch_d", self._sto.stoch_d.current.value)
To register a manual indicator for automatic updates with the security data, call the RegisterIndicator
register_indicator
method.
public class StochasticAlgorithm : QCAlgorithm { private Symbol _symbol; private Stochastic _sto; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _sto = new Stochastic(20, 10, 20); RegisterIndicator(_symbol, _sto, Resolution.Daily); } public override void OnData(Slice data) { if (_sto.IsReady) { // The current value of _sto is represented by itself (_sto) // or _sto.Current.Value Plot("Stochastic", "sto", _sto); // Plot all properties of sto Plot("Stochastic", "faststoch", _sto.FastStoch); Plot("Stochastic", "stochk", _sto.StochK); Plot("Stochastic", "stochd", _sto.StochD); } } }
class StochasticAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._sto = Stochastic(20, 10, 20) self.register_indicator(self._symbol, self._sto, Resolution.DAILY) def on_data(self, slice: Slice) -> None: if self._sto.is_ready: # The current value of self._sto is represented by self._sto.current.value self.plot("Stochastic", "sto", self._sto.current.value) # Plot all attributes of self._sto self.plot("Stochastic", "fast_stoch", self._sto.fast_stoch.current.value) self.plot("Stochastic", "stoch_k", self._sto.stoch_k.current.value) self.plot("Stochastic", "stoch_d", self._sto.stoch_d.current.value)
The following reference table describes the Stochastic
constructor:
Stochastic
This indicator computes the Slow Stochastics %K and %D. The Fast Stochastics %K is is computed by (Current Close Price - Lowest Price of given Period) / (Highest Price of given Period - Lowest Price of given Period) multiplied by 100. Once the Fast Stochastics %K is calculated the Slow Stochastic %K is calculated by the average/smoothed price of of the Fast %K with the given period. The Slow Stochastics %D is then derived from the Slow Stochastics %K with the given period.
get_enumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
reset()
Resets this indicator to its initial state
to_detailed_string()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
str
update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (datetime)
- value (float)
bool
update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
bool
consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet[IDataConsolidator]
current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
fast_stoch
Gets the value of the Fast Stochastics %K given Period.
Gets the value of the Fast Stochastics %K given Period.
IndicatorBase[IBaseDataBar]
is_ready
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
item
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
name
Gets a name for this indicator
Gets a name for this indicator
str
previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
stoch_d
Gets the value of the Slow Stochastics given Period D.
Gets the value of the Slow Stochastics given Period D.
IndicatorBase[IBaseDataBar]
stoch_k
Gets the value of the Slow Stochastics given Period K.
Gets the value of the Slow Stochastics given Period K.
IndicatorBase[IBaseDataBar]
warm_up_period
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
int
window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow[IndicatorDataPoint]
Stochastic
This indicator computes the Slow Stochastics %K and %D. The Fast Stochastics %K is is computed by (Current Close Price - Lowest Price of given Period) / (Highest Price of given Period - Lowest Price of given Period) multiplied by 100. Once the Fast Stochastics %K is calculated the Slow Stochastic %K is calculated by the average/smoothed price of of the Fast %K with the given period. The Slow Stochastics %D is then derived from the Slow Stochastics %K with the given period.
GetEnumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
Reset()
Resets this indicator to its initial state
ToDetailedString()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
String
Update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (DateTime)
- value (decimal)
Boolean
Update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
Boolean
Consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet<IDataConsolidator>
Current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
FastStoch
Gets the value of the Fast Stochastics %K given Period.
Gets the value of the Fast Stochastics %K given Period.
IndicatorBase<IBaseDataBar>
IsReady
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
Name
Gets a name for this indicator
Gets a name for this indicator
string
Previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
Samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
StochD
Gets the value of the Slow Stochastics given Period D.
Gets the value of the Slow Stochastics given Period D.
IndicatorBase<IBaseDataBar>
StochK
Gets the value of the Slow Stochastics given Period K.
Gets the value of the Slow Stochastics given Period K.
IndicatorBase<IBaseDataBar>
WarmUpPeriod
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
Int32
Window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow<IndicatorDataPoint>
[System.Int32]
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
Visualization
The following image shows plot values of selected properties of Stochastic
using the plotly library.
Indicator History
To get the historical data of the Stochastic
indicator, call the IndicatorHistory
self.indicator_history
method.
This method resets your indicator, makes a history request, and updates the indicator with the historical data.
Just like with regular history requests, the IndicatorHistory
indicator_history
method supports time periods based on a trailing number of bars, a trailing period of time, or a defined period of time.
If you don't provide a resolution
argument, it defaults to match the resolution of the security subscription.
public class StochasticAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; var sto = STO(_symbol, 20, 10, 20); var countIndicatorHistory = IndicatorHistory(sto, _symbol, 100, Resolution.Minute); var timeSpanIndicatorHistory = IndicatorHistory(sto, _symbol, TimeSpan.FromDays(10), Resolution.Minute); var timePeriodIndicatorHistory = IndicatorHistory(sto, _symbol, new DateTime(2024, 7, 1), new DateTime(2024, 7, 5), Resolution.Minute); } }
class StochasticAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol sto = self.sto(self._symbol, 20, 10, 20) count_indicator_history = self.indicator_history(sto, self._symbol, 100, Resolution.MINUTE) timedelta_indicator_history = self.indicator_history(sto, self._symbol, timedelta(days=10), Resolution.MINUTE) time_period_indicator_history = self.indicator_history(sto, self._symbol, datetime(2024, 7, 1), datetime(2024, 7, 5), Resolution.MINUTE)
To make the IndicatorHistory
indicator_history
method update the indicator with an alternative price field instead of the close (or mid-price) of each bar, pass a selector
argument.
var indicatorHistory = IndicatorHistory(sto, 100, Resolution.Minute, (bar) => ((TradeBar)bar).High);
indicator_history = self.indicator_history(sto, 100, Resolution.MINUTE, lambda bar: bar.high) indicator_history_df = indicator_history.data_frame
If you already have a list of Slice objects, you can pass them to the IndicatorHistory
indicator_history
method to avoid the internal history request.
var history = History(_symbol, 100, Resolution.Minute); var historyIndicatorHistory = IndicatorHistory(sto, history);
To access the properties of the indicator history, invoke the property of each IndicatorDataPoint
object.index the DataFrame with the property name.
var faststoch = indicatorHistory.Select(x => ((dynamic)x).FastStoch).ToList(); var stochk = indicatorHistory.Select(x => ((dynamic)x).StochK).ToList(); var stochd = indicatorHistory.Select(x => ((dynamic)x).StochD).ToList(); // Alternative way // var faststoch = indicatorHistory.Select(x => x["faststoch"]).ToList(); // var stochk = indicatorHistory.Select(x => x["stochk"]).ToList(); // var stochd = indicatorHistory.Select(x => x["stochd"]).ToList();
fast_stoch = indicator_history_df["fast_stoch"] stoch_k = indicator_history_df["stoch_k"] stoch_d = indicator_history_df["stoch_d"] # Alternative way # fast_stoch = indicator_history_df.fast_stoch # stoch_k = indicator_history_df.stoch_k # stoch_d = indicator_history_df.stoch_d