Option Strategies

Short Strangle

Introduction

Short Strangle is an Options trading strategy that consists of simultaneously selling an OTM put and an OTM call, where both contracts have the same underlying asset and expiration date. By doing so, the trader is essentially betting that the underlying asset will remain relatively stable and not experience significant price movements before the Options' expiration.

Compared to a short straddle, the net debit of a short strangle is lower since OTM Options are cheaper. Additionally, the winning range of a short straddle is wider and the strike spread is wider.

Implementation

Follow these steps to implement the short strangle strategy:

  1. In the Initializeinitialize method, set the start date, end date, cash, and Option universe.
  2. private Symbol _symbol;
    
    public override void Initialize()
    {
        SetStartDate(2017, 4, 1);
        SetEndDate(2017, 4, 30);
        SetCash(100000);
    
        UniverseSettings.Asynchronous = true;
        var option = AddOption("GOOG");
        _symbol = option.Symbol;
        option.SetFilter(universe => universe.IncludeWeeklys().Strangle(30, 5, -10));
    }
    def initialize(self) -> None:
        self.set_start_date(2017, 4, 1)
        self.set_end_date(2017, 4, 30)
        self.set_cash(100000)
    
        self.universe_settings.asynchronous = True
        option = self.add_option("GOOG")
        self._symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().strangle(30, 5, -10))

    The Stranglestrangle filter narrows the universe down to just the two contracts you need to form a short strangle.

  3. In the OnDataon_data method, select the contracts of the strategy legs.
  4. public override void OnData(Slice slice)
    {
        if (Portfolio.Invested ||
            !slice.OptionChains.TryGetValue(_symbol, out var chain))
        { 
            return;
        }
    
        // Find options with the farthest expiry
        var expiry = chain.Max(contract => contract.Expiry);
        var contracts = chain.Where(contract => contract.Expiry == expiry).ToList();
    
        // Order the OTM calls by strike to find the nearest to ATM
        var callContracts = contracts
            .Where(contract => contract.Right == OptionRight.Call &&
                contract.Strike > chain.Underlying.Price)
            .OrderBy(contract => contract.Strike).ToArray();
        if (callContracts.Length == 0) return;
    
        // Order the OTM puts by strike to find the nearest to ATM
        var putContracts = contracts
            .Where(contract => contract.Right == OptionRight.Put &&
                contract.Strike < chain.Underlying.Price)
            .OrderByDescending(contract => contract.Strike).ToArray();
        if (putContracts.Length == 0) return;
    
        var call = callContracts[0];
        var put = putContracts[0];
    def on_data(self, slice: Slice) -> None:
        if self.portfolio.invested:
            return
    
        chain = slice.option_chains.get(self._symbol)
        if not chain:
            return
    
        # Find options with the farthest expiry
        expiry = max([x.expiry for x in chain])
        contracts = [contract for contract in chain if contract.expiry == expiry]
         
        # Order the OTM calls by strike to find the nearest to ATM
        call_contracts = sorted([contract for contract in contracts
            if contract.right == OptionRight.CALL and
                contract.strike > chain.underlying.price],
            key=lambda x: x.strike)
        if not call_contracts:
            return
            
        # Order the OTM puts by strike to find the nearest to ATM
        put_contracts = sorted([contract for contract in contracts
            if contract.right == OptionRight.PUT and
               contract.strike < chain.underlying.price],
            key=lambda x: x.strike, reverse=True)
        if not put_contracts:
            return
    
        call = call_contracts[0]
        put = put_contracts[0]
  5. In the OnDataon_data method, place the orders.
  6. Approach A: Call the OptionStrategies.ShortStrangleOptionStrategies.short_strangle method with the details of each leg and then pass the result to the Buybuy method.

    var shortStrangle = OptionStrategies.ShortStrangle(_symbol, call.Strike, put.Strike, expiry);
    Buy(shortStrangle, 1);
    short_strangle = OptionStrategies.short_strangle(self._symbol, call.strike, put.strike, expiry)
    self.buy(short_strangle, 1)

    Approach B: Create a list of Leg objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.

    var legs = new List<Leg>()
        {
            Leg.Create(call.Symbol, -1),
            Leg.Create(put.Symbol, -1)
        };
    ComboMarketOrder(legs, 1);
    legs = [
        Leg.create(call.symbol, -1),
        Leg.create(put.symbol, -1)
    ]
    self.combo_market_order(legs, 1)

Strategy Payoff

The payoff of the strategy is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{C})^{+}\\ P^{OTM}_T & = & (K^{P} - S_T)^{+}\\ P_T & = & (-C^{OTM}_T - P^{OTM}_T + C^{OTM}_0 + P^{OTM}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{C} & = & \textrm{OTM call strike price}\\ & K^{P} & = & \textrm{OTM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$

The following chart shows the payoff at expiration:

Strategy payoff decomposition and analysis of short strangle

The maximum profit $C^{OTM}_0 + P^{OTM}_0$. It occurs when the underlying price at expiration remains within the range of the strike prices. In this case, both Options expire worthless.

The maximum loss is unlimited if the underlying price rises to infinity or substantial, $C^{OTM}_0 + P^{OTM}_0 - K^{P}$, if it drops to zero at expiration.

If the Option is American Option, there is a risk of early assignment on the contracts you sell.

Example

The following table shows the price details of the assets in the algorithm at Option expiration (2017-04-22):

AssetPrice ($)Strike ($)
Call8.00835.00
Put7.40832.50
Underlying Equity at expiration843.19-

Therefore, the payoff is

$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{C})^{+}\\ & = & (843.19-835.00)^{+}\\ & = & 8.19\\ P^{OTM}_T & = & (K^{P} - S_T)^{+}\\ & = & (832.50-843.19)^{+}\\ & = & 0\\ P_T & = & (-C^{OTM}_T - P^{OTM}_T + C^{OTM}_0 + P^{OTM}_0)\times m - fee\\ & = & (-8.19-0+8.00+7.40)\times100-2.00\times2\\ & = & 719 \end{array} $$

So, the strategy gains $719.

The following algorithm implements a short straddle strategy:

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: