Option Strategies
Bear Call Ladder
Introduction
Bear call ladder, also known as short call ladder, is a combination of a bear call spread and a long call with a higher strike price than the 2 legs of the call spread. All calls have the same underlying Equity and expiration date. This strategy profits from increasing volatility of the underlying asset. For instance, the underlying price moves away from its current price.
Implementation
Follow these steps to implement the bear call ladder strategy:
- In the
Initialize
initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
on_data
method, select the expiration and strikes of the contracts in the strategy legs. - In the
OnData
on_data
method, select the contracts and place the orders.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 4, 1); SetEndDate(2017, 4, 22); SetCash(1000000); UniverseSettings.Asynchronous = true; var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(universe => universe.IncludeWeeklys().CallLadder(30, 5, 0, -5)); }
def initialize(self) -> None: self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 22) self.set_cash(1000000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().call_ladder(30, 5, 0, -5))
public override void OnData(Slice slice) { if (Portfolio.Invested || !slice.OptionChains.TryGetValue(_symbol, out var chain)) { return; } // Select the call Option contracts with the furthest expiry var expiry = chain.Max(x => x.Expiry); var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call); if (calls.Count() == 0) return; // Select the strike prices from the remaining contracts var strikes = calls.Select(x => x.Strike).Distinct().OrderBy(x => x).ToList(); if (strikes.Count < 3) { return; } var lowStrike = strikes[0]; var middleStrike = strikes[1]; var highStrike = strikes[2];
def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select the call Option contracts with the furthest expiry expiry = max([x.expiry for x in chain]) calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL] if not calls: return # Select the strike prices from the remaining contracts strikes = sorted(set(x.strike for x in calls)) if len(strikes) < 3: return low_strike = strikes[0] middle_strike = strikes[1] high_strike = strikes[2]
Approach A: Call the OptionStrategies.BearCallLadder
OptionStrategies.bear_call_ladder
method with the details of each leg and then pass the result to the Buy
buy
method.
var optionStrategy = OptionStrategies.BearCallLadder(_symbol, lowStrike, middleStrike, highStrike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.bear_call_ladder(self._symbol, low_strike, middle_strike, high_strike, expiry) self.buy(option_strategy, 1)
Approach B: Create a list of Leg
objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.
var lowStrikeCall = calls.Single(x => x.Strike == lowStrike); var middleStrikeCall = calls.Single(x => x.Strike == middleStrike); var highStrikeCall = calls.Single(x => x.Strike == highStrike); var legs = new List<Leg>() { Leg.Create(lowStrikeCall.Symbol, -1), Leg.Create(middleStrikeCall.Symbol, 1), Leg.Create(highStrikeCall.Symbol, 1) }; ComboMarketOrder(legs, 1, true);
low_strike_call = next(filter(lambda x: x.strike == low_strike, calls)) middle_strike_call = next(filter(lambda x: x.strike == middle_strike, calls)) high_strike_call = next(filter(lambda x: x.strike == high_strike, calls)) legs = [ Leg.create(low_strike_call.symbol, -1), Leg.create(middle_strike_call.symbol, 1), Leg.create(high_strike_call.symbol, 1) ] self.combo_market_order(legs, 1)
Strategy Payoff
The bear call ladding is an unlimited-profit-limited-risk strategy. The payoff is
$$ \begin{array}{rcll} C^{low}_T & = & (S_T - K^{low})^{+}\\ C^{mid}_T & = & (S_T - K^{mid})^{+}\\ C^{high}_T & = & (S_T - K^{high})^{+}\\ Payoff_T & = & (C^{low}_0 - C^{low}_T + C^{mid}_T - C^{mid}_0 + C^{high}_T - C^{high}_0)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{low}_T & = & \textrm{Lower-strike call value at time T}\\ & C^{mid}_T & = & \textrm{Middle-strike call value at time T}\\ & C^{high}_T & = & \textrm{Higher-strike call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{low} & = & \textrm{Lower-strike call strike price}\\ & K^{mid} & = & \textrm{Middle-strike call strike price}\\ & K^{high} & = & \textrm{Higher-strike call strike price}\\ & C^{low}_0 & = & \textrm{Lower-strike call value at position opening (credit received)}\\ & C^{mid}_0 & = & \textrm{Middle-strikeTM call value at position opening (debit paid)}\\ & C^{high}_0 & = & \textrm{Higher-strike call value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:
The maximum profit is unlimited, which occurs when the underlying price increases indefinitely.
The maximum loss is $K^{low} - K^{mid} + C^{low}_0 - C^{mid}_0 - C^{high}_0$, which occurs when the underlying price is between the two higher strike prices.
If the Option is American Option, there is a risk of early assignment on the contract you sell.
Example
The following table shows the price details of the assets in the algorithm:
Asset | Price ($) | Strike ($) |
---|---|---|
Lower-Strike call | 13.80 | 822.50 |
Middle-strike call | 15.10 | 825.00 |
Higher-strike call | 13.10 | 827.50 |
Underlying Equity at expiration | 843.25 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{low}_T & = & (S_T - K^{low})^{+}\\ & = & (843.25-822.50)^{+}\\ & = & 20.75\\ C^{mid}_T & = & (S_T - K^{mid})^{+}\\ & = & (843.25-825.00)^{+}\\ & = & 18.25\\ C^{high}_T & = & (S_T - K^{high})^{+}\\ & = & (843.25-827.50)^{+}\\ & = & 15.75\\ Payoff_T & = & (C^{low}_0 - C^{low}_T + C^{mid}_T - C^{mid}_0 + C^{high}_T - C^{high}_0)\times m - fee\\ & = & (13.80 - 20.75 + 18.25 - 15.10 + 15.75 - 13.10)\times100-1.00\times3\\ & = & -118\\ \end{array} $$So, the strategy loses $118.
The following algorithm implements a bear call ladder Option strategy: