Supported Indicators
Bollinger Bands
Introduction
This indicator creates a moving average (middle band) with an upper band and lower band fixed at k standard deviations above and below the moving average.
To view the implementation of this indicator, see the LEAN GitHub repository.
Using BB Indicator
To create an automatic indicators for BollingerBands
, call the BB
helper method from the QCAlgorithm
class. The BB
method creates a BollingerBands
object, hooks it up for automatic updates, and returns it so you can used it in your algorithm. In most cases, you should call the helper method in the Initialize
initialize
method.
public class BollingerBandsAlgorithm : QCAlgorithm { private Symbol _symbol; private BollingerBands _bb; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _bb = BB(_symbol, 30, 2); } public override void OnData(Slice data) { if (_bb.IsReady) { // The current value of _bb is represented by itself (_bb) // or _bb.Current.Value Plot("BollingerBands", "bb", _bb); // Plot all properties of bb Plot("BollingerBands", "standarddeviation", _bb.StandardDeviation); Plot("BollingerBands", "middleband", _bb.MiddleBand); Plot("BollingerBands", "upperband", _bb.UpperBand); Plot("BollingerBands", "lowerband", _bb.LowerBand); Plot("BollingerBands", "bandwidth", _bb.BandWidth); Plot("BollingerBands", "percentb", _bb.PercentB); Plot("BollingerBands", "price", _bb.Price); } } }
class BollingerBandsAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._bb = self.bb(self._symbol, 30, 2) def on_data(self, slice: Slice) -> None: if self._bb.is_ready: # The current value of self._bb is represented by self._bb.current.value self.plot("BollingerBands", "bb", self._bb.current.value) # Plot all attributes of self._bb self.plot("BollingerBands", "standard_deviation", self._bb.standard_deviation.current.value) self.plot("BollingerBands", "middle_band", self._bb.middle_band.current.value) self.plot("BollingerBands", "upper_band", self._bb.upper_band.current.value) self.plot("BollingerBands", "lower_band", self._bb.lower_band.current.value) self.plot("BollingerBands", "band_width", self._bb.band_width.current.value) self.plot("BollingerBands", "percent_b", self._bb.percent_b.current.value) self.plot("BollingerBands", "price", self._bb.price.current.value)
The following reference table describes the BB
method:
bb(symbol, period, k, moving_average_type=0, resolution=None, selector=None)
[source]Creates a new BollingerBands indicator which will compute the MiddleBand, UpperBand, LowerBand, and StandardDeviation
- symbol (Symbol) — The symbol whose BollingerBands we seek
- period (int) — The period of the standard deviation and moving average (middle band)
- k (float) — The number of standard deviations specifying the distance between the middle band and upper or lower bands
- moving_average_type (MovingAverageType, optional) — The type of moving average to be used
- resolution (Resolution, optional) — The resolution
- selector (Callable[IBaseData, float], optional) — x.Value)
A BollingerBands configured with the specified period
BB(symbol, period, k, movingAverageType=0, resolution=None, selector=None)
[source]Creates a new BollingerBands indicator which will compute the MiddleBand, UpperBand, LowerBand, and StandardDeviation
- symbol (Symbol) — The symbol whose BollingerBands we seek
- period (Int32) — The period of the standard deviation and moving average (middle band)
- k (decimal) — The number of standard deviations specifying the distance between the middle band and upper or lower bands
- movingAverageType (MovingAverageType, optional) — The type of moving average to be used
- resolution (Resolution, optional) — The resolution
- selector (Func<IBaseData, Decimal>, optional) — x.Value)
A BollingerBands configured with the specified period
If you don't provide a resolution, it defaults to the security resolution. If you provide a resolution, it must be greater than or equal to the resolution of the security. For instance, if you subscribe to hourly data for a security, you should update its indicator with data that spans 1 hour or longer.
For more information about the selector argument, see Alternative Price Fields.
For more information about plotting indicators, see Plotting Indicators.
The following table describes the MovingAverageType
enumeration members:
To avoid parameter ambiguity, use the resolution
argument to set the Resolution
.
public class BollingerBandsAlgorithm : QCAlgorithm { private Symbol _symbol; private BollingerBands _bb; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Hour).Symbol; _bb = BB(_symbol, 30, 2, resolution: Resolution.Daily); } }
class BollingerBandsAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.HOUR).Symbol self._bb = self.bb(self._symbol, 30, 2, resolution=Resolution.DAILY)
You can manually create a BollingerBands
indicator, so it doesn't automatically update. Manual indicators let you update their values with any data you choose.
Updating your indicator manually enables you to control when the indicator is updated and what data you use to update it. To manually update the indicator, call the Update
update
method with time/number pair or an IndicatorDataPoint
. The indicator will only be ready after you prime it with enough data.
public class BollingerBandsAlgorithm : QCAlgorithm { private Symbol _symbol; private BollingerBands _bb; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _bb = new BollingerBands(30, 2); } public override void OnData(Slice data) { if (data.Bars.TryGetValue(_symbol, out var bar)) { _bb.Update(bar.EndTime, bar.Close); } if (_bb.IsReady) { // The current value of _bb is represented by itself (_bb) // or _bb.Current.Value Plot("BollingerBands", "bb", _bb); // Plot all properties of bb Plot("BollingerBands", "standarddeviation", _bb.StandardDeviation); Plot("BollingerBands", "middleband", _bb.MiddleBand); Plot("BollingerBands", "upperband", _bb.UpperBand); Plot("BollingerBands", "lowerband", _bb.LowerBand); Plot("BollingerBands", "bandwidth", _bb.BandWidth); Plot("BollingerBands", "percentb", _bb.PercentB); Plot("BollingerBands", "price", _bb.Price); } } }
class BollingerBandsAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._bb = BollingerBands(30, 2) def on_data(self, slice: Slice) -> None: bar = slice.bars.get(self._symbol) if bar: self._bb.update(bar.EndTime, bar.Close) if self._bb.is_ready: # The current value of self._bb is represented by self._bb.current.value self.plot("BollingerBands", "bb", self._bb.current.value) # Plot all attributes of self._bb self.plot("BollingerBands", "standard_deviation", self._bb.standard_deviation.current.value) self.plot("BollingerBands", "middle_band", self._bb.middle_band.current.value) self.plot("BollingerBands", "upper_band", self._bb.upper_band.current.value) self.plot("BollingerBands", "lower_band", self._bb.lower_band.current.value) self.plot("BollingerBands", "band_width", self._bb.band_width.current.value) self.plot("BollingerBands", "percent_b", self._bb.percent_b.current.value) self.plot("BollingerBands", "price", self._bb.price.current.value)
To register a manual indicator for automatic updates with the security data, call the RegisterIndicator
register_indicator
method.
public class BollingerBandsAlgorithm : QCAlgorithm { private Symbol _symbol; private BollingerBands _bb; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; _bb = new BollingerBands(30, 2); RegisterIndicator(_symbol, _bb, Resolution.Daily); } public override void OnData(Slice data) { if (_bb.IsReady) { // The current value of _bb is represented by itself (_bb) // or _bb.Current.Value Plot("BollingerBands", "bb", _bb); // Plot all properties of bb Plot("BollingerBands", "standarddeviation", _bb.StandardDeviation); Plot("BollingerBands", "middleband", _bb.MiddleBand); Plot("BollingerBands", "upperband", _bb.UpperBand); Plot("BollingerBands", "lowerband", _bb.LowerBand); Plot("BollingerBands", "bandwidth", _bb.BandWidth); Plot("BollingerBands", "percentb", _bb.PercentB); Plot("BollingerBands", "price", _bb.Price); } } }
class BollingerBandsAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol self._bb = BollingerBands(30, 2) self.register_indicator(self._symbol, self._bb, Resolution.DAILY) def on_data(self, slice: Slice) -> None: if self._bb.is_ready: # The current value of self._bb is represented by self._bb.current.value self.plot("BollingerBands", "bb", self._bb.current.value) # Plot all attributes of self._bb self.plot("BollingerBands", "standard_deviation", self._bb.standard_deviation.current.value) self.plot("BollingerBands", "middle_band", self._bb.middle_band.current.value) self.plot("BollingerBands", "upper_band", self._bb.upper_band.current.value) self.plot("BollingerBands", "lower_band", self._bb.lower_band.current.value) self.plot("BollingerBands", "band_width", self._bb.band_width.current.value) self.plot("BollingerBands", "percent_b", self._bb.percent_b.current.value) self.plot("BollingerBands", "price", self._bb.price.current.value)
The following reference table describes the BollingerBands
constructor:
BollingerBands
This indicator creates a moving average (middle band) with an upper band and lower band fixed at k standard deviations above and below the moving average.
get_enumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
reset()
Resets this indicator and all sub-indicators (StandardDeviation, LowerBand, MiddleBand, UpperBand, BandWidth, %B)
to_detailed_string()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
str
update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (datetime)
- value (float)
bool
update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
bool
band_width
Gets the Bollinger BandWidth indicator BandWidth = ((Upper Band - Lower Band) / Middle Band) * 100
Gets the Bollinger BandWidth indicator BandWidth = ((Upper Band - Lower Band) / Middle Band) * 100
IndicatorBase[IndicatorDataPoint]
consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet[IDataConsolidator]
current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
is_ready
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
item
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
lower_band
Gets the lower Bollinger band (middleBand - k * stdDev)
Gets the lower Bollinger band (middleBand - k * stdDev)
IndicatorBase[IndicatorDataPoint]
middle_band
Gets the middle Bollinger band (moving average)
Gets the middle Bollinger band (moving average)
IndicatorBase[IndicatorDataPoint]
moving_average_type
Gets the type of moving average
Gets the type of moving average
MovingAverageType
name
Gets a name for this indicator
Gets a name for this indicator
str
percent_b
Gets the Bollinger %B %B = (Price - Lower Band)/(Upper Band - Lower Band)
Gets the Bollinger %B %B = (Price - Lower Band)/(Upper Band - Lower Band)
IndicatorBase[IndicatorDataPoint]
previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
price
Gets the Price level
Gets the Price level
IndicatorBase[IndicatorDataPoint]
samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
standard_deviation
Gets the standard deviation
Gets the standard deviation
IndicatorBase[IndicatorDataPoint]
upper_band
Gets the upper Bollinger band (middleBand + k * stdDev)
Gets the upper Bollinger band (middleBand + k * stdDev)
IndicatorBase[IndicatorDataPoint]
warm_up_period
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
int
window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow[IndicatorDataPoint]
BollingerBands
This indicator creates a moving average (middle band) with an upper band and lower band fixed at k standard deviations above and below the moving average.
GetEnumerator()
Returns an enumerator that iterates through the history window.
IEnumerator[IndicatorDataPoint]
Reset()
Resets this indicator and all sub-indicators (StandardDeviation, LowerBand, MiddleBand, UpperBand, BandWidth, %B)
ToDetailedString()
Provides a more detailed string of this indicator in the form of {Name} - {Value}
String
Update(time, value)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- time (DateTime)
- value (decimal)
Boolean
Update(input)
Updates the state of this indicator with the given value and returns true if this indicator is ready, false otherwise
- input (IBaseData)
Boolean
BandWidth
Gets the Bollinger BandWidth indicator BandWidth = ((Upper Band - Lower Band) / Middle Band) * 100
Gets the Bollinger BandWidth indicator BandWidth = ((Upper Band - Lower Band) / Middle Band) * 100
IndicatorBase<IndicatorDataPoint>
Consolidators
The data consolidators associated with this indicator if any
The data consolidators associated with this indicator if any
ISet<IDataConsolidator>
Current
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the current state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
IsReady
Gets a flag indicating when this indicator is ready and fully initialized
Gets a flag indicating when this indicator is ready and fully initialized
bool
LowerBand
Gets the lower Bollinger band (middleBand - k * stdDev)
Gets the lower Bollinger band (middleBand - k * stdDev)
IndicatorBase<IndicatorDataPoint>
MiddleBand
Gets the middle Bollinger band (moving average)
Gets the middle Bollinger band (moving average)
IndicatorBase<IndicatorDataPoint>
MovingAverageType
Gets the type of moving average
Gets the type of moving average
MovingAverageType
Name
Gets a name for this indicator
Gets a name for this indicator
string
PercentB
Gets the Bollinger %B %B = (Price - Lower Band)/(Upper Band - Lower Band)
Gets the Bollinger %B %B = (Price - Lower Band)/(Upper Band - Lower Band)
IndicatorBase<IndicatorDataPoint>
Previous
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
Gets the previous state of this indicator. If the state has not been updated then the time on the value will equal DateTime.MinValue.
IndicatorDataPoint
Price
Gets the Price level
Gets the Price level
IndicatorBase<IndicatorDataPoint>
Samples
Gets the number of samples processed by this indicator
Gets the number of samples processed by this indicator
int
StandardDeviation
Gets the standard deviation
Gets the standard deviation
IndicatorBase<IndicatorDataPoint>
UpperBand
Gets the upper Bollinger band (middleBand + k * stdDev)
Gets the upper Bollinger band (middleBand + k * stdDev)
IndicatorBase<IndicatorDataPoint>
WarmUpPeriod
Required period, in data points, for the indicator to be ready and fully initialized.
Required period, in data points, for the indicator to be ready and fully initialized.
Int32
Window
A rolling window keeping a history of the indicator values of a given period
A rolling window keeping a history of the indicator values of a given period
RollingWindow<IndicatorDataPoint>
[System.Int32]
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
Indexes the history windows, where index 0 is the most recent indicator value. If index is greater or equal than the current count, it returns null. If the index is greater or equal than the window size, it returns null and resizes the windows to i + 1.
IndicatorDataPoint
Visualization
The following image shows plot values of selected properties of BollingerBands
using the plotly library.
Indicator History
To get the historical data of the BollingerBands
indicator, call the IndicatorHistory
self.indicator_history
method.
This method resets your indicator, makes a history request, and updates the indicator with the historical data.
Just like with regular history requests, the IndicatorHistory
indicator_history
method supports time periods based on a trailing number of bars, a trailing period of time, or a defined period of time.
If you don't provide a resolution
argument, it defaults to match the resolution of the security subscription.
public class BollingerBandsAlgorithm : QCAlgorithm { private Symbol _symbol; public override void Initialize() { _symbol = AddEquity("SPY", Resolution.Daily).Symbol; var bb = BB(_symbol, 30, 2); var countIndicatorHistory = IndicatorHistory(bb, _symbol, 100, Resolution.Minute); var timeSpanIndicatorHistory = IndicatorHistory(bb, _symbol, TimeSpan.FromDays(10), Resolution.Minute); var timePeriodIndicatorHistory = IndicatorHistory(bb, _symbol, new DateTime(2024, 7, 1), new DateTime(2024, 7, 5), Resolution.Minute); } }
class BollingerBandsAlgorithm(QCAlgorithm): def initialize(self) -> None: self._symbol = self.add_equity("SPY", Resolution.DAILY).symbol bb = self.bb(self._symbol, 30, 2) count_indicator_history = self.indicator_history(bb, self._symbol, 100, Resolution.MINUTE) timedelta_indicator_history = self.indicator_history(bb, self._symbol, timedelta(days=10), Resolution.MINUTE) time_period_indicator_history = self.indicator_history(bb, self._symbol, datetime(2024, 7, 1), datetime(2024, 7, 5), Resolution.MINUTE)
To make the IndicatorHistory
indicator_history
method update the indicator with an alternative price field instead of the close (or mid-price) of each bar, pass a selector
argument.
var indicatorHistory = IndicatorHistory(bb, 100, Resolution.Minute, (bar) => ((TradeBar)bar).High);
indicator_history = self.indicator_history(bb, 100, Resolution.MINUTE, lambda bar: bar.high) indicator_history_df = indicator_history.data_frame
If you already have a list of Slice objects, you can pass them to the IndicatorHistory
indicator_history
method to avoid the internal history request.
var history = History(_symbol, 100, Resolution.Minute); var historyIndicatorHistory = IndicatorHistory(bb, history);
To access the properties of the indicator history, invoke the property of each IndicatorDataPoint
object.index the DataFrame with the property name.
var standarddeviation = indicatorHistory.Select(x => ((dynamic)x).StandardDeviation).ToList(); var middleband = indicatorHistory.Select(x => ((dynamic)x).MiddleBand).ToList(); var upperband = indicatorHistory.Select(x => ((dynamic)x).UpperBand).ToList(); var lowerband = indicatorHistory.Select(x => ((dynamic)x).LowerBand).ToList(); var bandwidth = indicatorHistory.Select(x => ((dynamic)x).BandWidth).ToList(); var percentb = indicatorHistory.Select(x => ((dynamic)x).PercentB).ToList(); var price = indicatorHistory.Select(x => ((dynamic)x).Price).ToList(); // Alternative way // var standarddeviation = indicatorHistory.Select(x => x["standarddeviation"]).ToList(); // var middleband = indicatorHistory.Select(x => x["middleband"]).ToList(); // var upperband = indicatorHistory.Select(x => x["upperband"]).ToList(); // var lowerband = indicatorHistory.Select(x => x["lowerband"]).ToList(); // var bandwidth = indicatorHistory.Select(x => x["bandwidth"]).ToList(); // var percentb = indicatorHistory.Select(x => x["percentb"]).ToList(); // var price = indicatorHistory.Select(x => x["price"]).ToList();
standard_deviation = indicator_history_df["standard_deviation"] middle_band = indicator_history_df["middle_band"] upper_band = indicator_history_df["upper_band"] lower_band = indicator_history_df["lower_band"] band_width = indicator_history_df["band_width"] percent_b = indicator_history_df["percent_b"] price = indicator_history_df["price"] # Alternative way # standard_deviation = indicator_history_df.standard_deviation # middle_band = indicator_history_df.middle_band # upper_band = indicator_history_df.upper_band # lower_band = indicator_history_df.lower_band # band_width = indicator_history_df.band_width # percent_b = indicator_history_df.percent_b # price = indicator_history_df.price