Option Strategies

Long Call Backspread

Introduction

Long Call Backspread, consists of short 1 lower-strike call and long 2 higher strike calls. It is a combination of a bear call spread and a long call with the same strike price as the higher-strike leg the call spread. All calls have the same underlying Equity and expiration date. This strategy profits from increasing volatility of the underlying asset. For instance, the underlying price moves away from its current price.

Implementation

Follow these steps to implement the long call backspread strategy:

  1. In the Initializeinitialize method, set the start date, end date, cash, and Option universe. You can use the CallSpreadcall_spread helper method in option universe filtering, since a call backspread consists of the same contracts as a call spread.
  2. private Symbol _symbol;
    
    public override void Initialize()
    {
        SetStartDate(2017, 4, 1);
        SetEndDate(2017, 4, 22);
        SetCash(1000000);
    
        UniverseSettings.Asynchronous = true;
        var option = AddOption("GOOG", Resolution.Minute);
        _symbol = option.Symbol;
        option.SetFilter(universe => universe.IncludeWeeklys().CallSpread(20, 5));
    }
    def initialize(self) -> None:
        self.set_start_date(2017, 4, 1)
        self.set_end_date(2017, 4, 22)
        self.set_cash(1000000)
    
        self.universe_settings.asynchronous = True
        option = self.add_option("GOOG", Resolution.MINUTE)
        self._symbol = option.symbol
        option.set_filter(lambda universe: universe.include_weeklys().call_spread(20, 5))
  3. In the OnDataon_data method, select the expiration and strikes of the contracts in the strategy legs.
  4. public override void OnData(Slice slice)
    {
        if (Portfolio.Invested ||
            !slice.OptionChains.TryGetValue(_symbol, out var chain))
        {
            return;
        }
    
        // Select the call Option contracts with the furthest expiry
        var expiry = chain.Max(x => x.Expiry);    
        var calls = chain.Where(x => x.Expiry == expiry && x.Right == OptionRight.Call);
        if (calls.Count() == 0) return;
    
        // Select the strike prices from the remaining contracts
        var strikes = calls.Select(x => x.Strike).Distinct().OrderBy(x => x).ToList();
        if (strikes.Count < 2)
        {
            return;
        }
        
        var lowStrike = strikes[0];
        var highStrike = strikes[1];
    def on_data(self, slice: Slice) -> None:
        if self.portfolio.invested:
            return
    
        # Get the OptionChain
        chain = slice.option_chains.get(self._symbol, None)
        if not chain:
            return
        
        # Select the call Option contracts with the furthest expiry
        expiry = max([x.expiry for x in chain])
        calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL]
        if not calls:
            return
    
        # Select the strike prices from the remaining contracts
        strikes = sorted(set(x.strike for x in calls))
        if len(strikes) < 2:
            return
        
        low_strike = strikes[0]
        high_strike = strikes[1]
  5. In the OnDataon_data method, select the contracts and place the orders.
  6. Approach A: Call the OptionStrategies.CallBackspreadOptionStrategies.call_backspread method with the details of each leg and then pass the result to the Buybuy method.

    var optionStrategy = OptionStrategies.CallBackspread(_symbol, lowStrike, highStrike, expiry);
    Buy(optionStrategy, 1);
    option_strategy = OptionStrategies.call_backspread(self._symbol, low_strike, high_strike, expiry)
    self.buy(option_strategy, 1)

    Approach B: Create a list of Leg objects and then call the Combo Market Ordercombo_market_order, Combo Limit Ordercombo_limit_order, or Combo Leg Limit Ordercombo_leg_limit_order method.

    var lowStrikeCall = calls.Single(x => x.Strike == lowStrike);
    var highStrikeCall = calls.Single(x => x.Strike == highStrike);
    
    var legs = new List<Leg>()
    {
        Leg.Create(lowStrikeCall.Symbol, -1),
        Leg.Create(highStrikeCall.Symbol, 2)
    };
    ComboMarketOrder(legs, 1, true);
    low_strike_call = next(filter(lambda x: x.strike == low_strike, calls))
    high_strike_call = next(filter(lambda x: x.strike == high_strike, calls))
    
    legs = [
        Leg.create(low_strike_call.symbol, -1),
        Leg.create(high_strike_call.symbol, 2)
    ]
    self.combo_market_order(legs, 1)

Strategy Payoff

The long call backspread is an unlimited-profit-limited-risk strategy. The payoff is

$$ \begin{array}{rcll} C^{low}_T & = & (S_T - K^{low})^{+}\\ C^{high}_T & = & (S_T - K^{high})^{+}\\ Payoff_T & = & (C^{low}_0 - C^{low}_T + C^{high}_T \times 2 - C^{high}_0 \times 2)\times m - fee\\ \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{low}_T & = & \textrm{Lower-strike call value at time T}\\ & C^{high}_T & = & \textrm{Higher-strike call value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{low} & = & \textrm{Lower-strike call strike price}\\ & K^{high} & = & \textrm{Higher-strike call strike price}\\ & C^{low}_0 & = & \textrm{Lower-strike call value at position opening (credit received)}\\ & C^{high}_0 & = & \textrm{Higher-strike call value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$

The following chart shows the payoff at expiration:

Strategy payoff decomposition and analysis of long call backspread

The maximum profit is unlimited, which occurs when the underlying price increases indefinitely.

The maximum loss is $K^{low} - K^{high} + C^{low}_0 - C^{high}_0 \times 2$, which occurs when the underlying price is exactly at the higher strike at expiry.

If the Option is American Option, there is a risk of early assignment on the contract you sell.

Example

The following table shows the price details of the assets in the algorithm:

AssetPrice ($)Strike ($)
Lower-Strike call12.00825.00
Higher-strike call8.80835.00
Underlying Equity at expiration843.19-

Therefore, the payoff is

$$ \begin{array}{rcll} C^{low}_T & = & (S_T - K^{low})^{+}\\ & = & (843.19-825.00)^{+}\\ & = & 18.19\\ C^{high}_T & = & (S_T - K^{high})^{+}\\ & = & (843.19-835.00)^{+}\\ & = & 8.19\\ Payoff_T & = & (C^{low}_0 - C^{low}_T + C^{high}_T \times 2 - C^{high}_0 \times 2)\times m - fee\\ & = & (12.00 - 18.19 + 8.19\times2 - 8.80\times2)\times100-2.30\\ & = & -743.30\\ \end{array} $$

So, the strategy loses $743.30.

The following algorithm implements a long call backspread Option strategy:

You can also see our Videos. You can also get in touch with us via Discord.

Did you find this page helpful?

Contribute to the documentation: