Hi All,
Inspired by the amazing series "From Research To Production" by Sherry Yang and Jack Simonson, I wanted to share with the community my implementation of a simple Long-Short Moving Average Crossover using the Algorithm Framework and a Research file with explanation of the Alpha logic.
There are already open-source implementations of this strategy of course, but the educational purpose of this algorithm is to show how seamlessly we can move from research to production with almost no changes in code. Also, I'm updating indicators "manually" using history calls on purpose, instead of using the QuantConnect Update method for indicators, as otherwise I couldn't replicate the logic in the research notebook.
ALGORITHM FRAMEWORK MODULES:
- Universe: Manual input of tickers.
- Alpha: Go Long when the Short Period Moving Average crosses above the Long Period Moving Average, and go Short when it crosses below.
- Portfolio: Equally Weighted portfolio (investing the same amounts in each security). It includes optional inputs for portfolio rebalancing.
- Execution: Immediate Execution with Market Orders (using a custom model Immediate 'Execution Model With Logs').
A couple of notes I'd like to share on these modules:
- The concept of Insights in the Alpha model. Normally and with few exceptions when using Minute data, the way I like to think about these insights is as a prediction that I update every trading bar (as opposed to giving a longer, uncertain period) for another extra bar until my model tells me that signal is no longer valid. As you can see, when we get a Long signal we emit InsightDirection.Up for one bar and then continue to update this prediction until we get a Short signal, and repeat the process. We use InsightDirection.Flat to stay in cash when there are no trading signals (in this algo that only happens from the launch of the backtest until it gets the first signal).
- In order to handle this way of sending Insights, I slightly modified the open-source code for the EqualWeightingPortfolioConstructionModel. This custom version will only rebalance the portfolio if:
- It's time to rebalance the portfolio. You can control the number of trading days between rebalances with the rebalancingParam input in the main.py script.
- OR there are Up/Down insights for securities that are not in the portfolio yet.
- OR there are changes in direction for actively invested securities.
- Finally, this project uses a custom implementation of the open-source Immediate Execution Model that includes many different logs of information about number of shares traded, average holding prices, profit and profit percent for both long and short positions. If you like that module you can simply plug it into any of your existing strategies that use market orders. This is a good example of the modularity of the Framework!
RESEARCH NOTEBOOK:
As mentioned above, this project includes a Research file with explanation of the Alpha logic. I tried to even 'replicate' the event-driven data flow of the Alpha module happening within the backtesting environment by looping through the dataframe of historical data in the research environment to update indicators and get trading signals, so we can see exactly what's happening behind the scenes of an algo. A few notes on this research notebook:
- The class SymbolData that stores the different indicator calculations for each symbol can be copied into the Alpha model with no changes in code.
- Then we're iterating through each row in the dataframe of historical data to update indicators and signals. You can see how this code is almost identical to the one found in the Alpha model. Of course, in the Alpha module the iterations through new data points happen behind the scenes, but this is pretty much what it's doing.
- At the end I'm just plotting the indicators and buy/sell signals so we can compare with the results from the backtesting plots. They should be the same.
- Play with different tickers, start/end dates and parameters for the moving averages on both the research notebook and the backtesting main.py script to check they both give the same plots!
OTHER FEATURES:
This project also includes some other features that might be of interest for beginners:
- Potting indicators in backtesting.
- Organizing code in a certain way with calculations per symbol stored in a separate Python class.
Merry Christmas!
Emilio
Sherry Yang
Hi Emilio,
Happy New Year, it's awesome to read such a clear and in-depth post! Many thanks for your contributions to the QC community.
Sherry
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Emilio Freire
Thanks for the message Sherry! And Happy New Year to the QC team!
Emilio
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
James Candan
I hadn't seen or thought of this use case for Research. THANK YOU!
Any chance you could update this? Currently, it throws an error:
--------------------------------------------------------------------------- FileNotFoundException Traceback (most recent call last) <ipython-input-6-b79d4cb63739> in <module> 3 AddReference("System") 4 AddReference("QuantConnect.Common") ----> 5 AddReference("QuantConnect.Jupyter") 6 AddReference("QuantConnect.Indicators") 7 from System import * FileNotFoundException: Unable to find assembly 'QuantConnect.Jupyter'. at Python.Runtime.CLRModule.AddReference(String name) in C:\Users\Colton\Desktop\Working\QuantConnect\Repos\pythonnet\src\runtime\moduleobject.cs:line 488
Is there a necessary replacement? I tried commenting out the Jupyter lines, but the plots never show.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
James Candan
Never mind. I got it working. I set the dates too short before.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
.ekz. INVESTOR
What a great post. Never would have spotted this if James Candan hadn't commented on this and bumped it up the feed.
Thanks for this solid community contribution, Emilio Freire Breaking it down as you did is very helpful.
( and thanks for the bump, James! )
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Emilio Freire
Thank you guys for the support!
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Lars Klawitter
To Yuri's earlier point of there being a difference between backtests and live trading as to when the stop orders are placed:
I've been running the strategy (using a larger universe and shorter opening range as per my previous post) on IBKR paper trading (i.e. on an actual IBKR account, not via QC paper trading) and as Yuri suggested, the stop orders are at times placed within the same minute. Mostly 20-40 seconds after the entry:
in one case the stop order was placed the same instance as the entry:
I tried second resolution, but that seems impractical given the large universe size.
So this is my attempt at an artificially delayed stop order placement:
I'm not a C# coder, so I definitely don't know what I'm doing. Backtests with this code produce by and large comparable results with the original code, so I'll try paper trading next.
Would the above code change make sense to you?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Yuri Lopukhov
So far I can see two issues:
I can't fix the first issue in C#, so I guess I will switch to Python version unless somebody else fixes the C# version and share it. Not sure if fixing it will improve results as well.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Jack Pizza
define: “does really well with 1 minute” ….. 2000-2002 still utterly collapses fail to see well really well fits in….
or does really well when overfitting super hard?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Quant Stratege
These backtests are not representative of live performance. When adding slippage, it can be significant at the open due to volatility, small-cap stocks, and using stop orders, making the results much less appealing.
Just add this line when adding securities:
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Lars Klawitter
You're right. I had previously only simulated very small constant slippages, but MarketImpactSlippage has quite a savage effect…
If it looks too good to be true…
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
AleNoc
I noticed a difference between the backtest and the selection with live data (data provider QuantConnect). What data provider do you use for live trading?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Evan lightner
I don't know where to start, I'll have to write a whole post and how I'm planning to implement this strategy. But first of all thank you @derek for sharing this (and of course for everything you've done with QC -its been a game changer for me).
But first of all, I just want to comment with one simple non-coding question….
Why are a good amount of people HATING on this strategy? I understand the backtest cherry pick , but for a bare bones boiler plate ( i messed around with some variables like holdings and percent risk and still got good results) , this is the best algo I've seen in a while, especially for being shared so freely - not to mention brand new piece of research in the community.
Is there just some sort of deep skepticism in the quant community at large I guess, inherently? I suppose that fits!
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Kevin Patterson
Does anyone else end up with very different symbols when running the exact same algo in backtesting vs live (IBKR paper trading)? For example when it is set to choose 20 symbols, I'll see maybe only half overlap –- and of course the ones going positive for the day in the backtest are the ones not picked up live 😅. Seems the relative volume calculations aren't exactly the same and it doesn't take much to move the symbols you get. This is my first foray in to large universe algo's, is this type discrepancy common with large universe backtests or is there settings to help make it line up better with live? S
Some folks were asking about sized nodes: after trying the python version on IBKR (with a few mods) an L1-2 node will make it through one day (it crashes after close though, so likely you need the next level up if you dont want to restart daily)
Thanks for all the python related posts, even if I don't end up trading it, the algo has been super helpful for learning more about the QC code and had some good recipes in it that I think would be helpful for any algorithm.
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
To unlock posting to the community forums please complete at least 30% of Boot Camp.
You can continue your Boot Camp training progress from the terminal. We hope to see you in the community soon!