Hello All!
We're looking for feedback on a proposed new Alpha selection filter. The Probabilistic Sharpe Ratio would give us another way to measure the results of backtests submitted and provide funds looking to license Alphas with more information about algorithm performance beyond our current metrics. If you have suggestions please clone the backtest, examine the notebook, and give us your thoughts!
Thanks,
Jack
Shile Wen
Hi .ekz.,
Users interested in metrics not supported by web QC can save the portfolio values and do custom calculations in OnEndOfAlgorithm and print the results or retrieve the results of the algorithm as shown in this post.
I've shown how to the former method in the attached backtest.
Best,
Shile Wen
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Jake Sehnert
Is the PSR calculated using CSCV?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Abhijeet Mulye
Longer duration backtests have higher PSRs. Is there a standardized time period for making sure an alpha has >= 80% PSR before submitting?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Jake,
No cross validation is used in the calculation. The formula is available in the notebook at the top of this thread. Implemented in Python, it is:
def get_psr(self, benchmark = 0): skew = sps.skew(self.returns) kurtosis = sps.kurtosis(self.returns) n = len(self.returns) estimate_std = np.sqrt( (1 - (skew*self.sharpe_ratio) + ((kurtosis-1)/4)*self.sharpe_ratio) / (n - 1) ) return round(sps.norm.cdf((self.sharpe_ratio - benchmark)/estimate_std),3)
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Abhijeet,
When submitting an alpha for Alpha Streams, the strategy must be backtest over the most recent 5 years. Refer to our documentation here.
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Shile Wen
Hi .ekz.,
Users interested in metrics not supported by web QC can save the portfolio values and do custom calculations in OnEndOfAlgorithm and print the results or retrieve the results of the algorithm as shown in this post.
I've shown how to the former method in the attached backtest.
Best,
Shile Wen
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Jake Sehnert
Is the PSR calculated using CSCV?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Abhijeet Mulye
Longer duration backtests have higher PSRs. Is there a standardized time period for making sure an alpha has >= 80% PSR before submitting?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Jake,
No cross validation is used in the calculation. The formula is available in the notebook at the top of this thread. Implemented in Python, it is:
def get_psr(self, benchmark = 0): skew = sps.skew(self.returns) kurtosis = sps.kurtosis(self.returns) n = len(self.returns) estimate_std = np.sqrt( (1 - (skew*self.sharpe_ratio) + ((kurtosis-1)/4)*self.sharpe_ratio) / (n - 1) ) return round(sps.norm.cdf((self.sharpe_ratio - benchmark)/estimate_std),3)
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Abhijeet,
When submitting an alpha for Alpha Streams, the strategy must be backtest over the most recent 5 years. Refer to our documentation here.
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Shile Wen
Hi .ekz.,
Users interested in metrics not supported by web QC can save the portfolio values and do custom calculations in OnEndOfAlgorithm and print the results or retrieve the results of the algorithm as shown in this post.
I've shown how to the former method in the attached backtest.
Best,
Shile Wen
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Jake Sehnert
Is the PSR calculated using CSCV?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Abhijeet Mulye
Longer duration backtests have higher PSRs. Is there a standardized time period for making sure an alpha has >= 80% PSR before submitting?
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Jake,
No cross validation is used in the calculation. The formula is available in the notebook at the top of this thread. Implemented in Python, it is:
def get_psr(self, benchmark = 0): skew = sps.skew(self.returns) kurtosis = sps.kurtosis(self.returns) n = len(self.returns) estimate_std = np.sqrt( (1 - (skew*self.sharpe_ratio) + ((kurtosis-1)/4)*self.sharpe_ratio) / (n - 1) ) return round(sps.norm.cdf((self.sharpe_ratio - benchmark)/estimate_std),3)
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
Derek Melchin
Hi Abhijeet,
When submitting an alpha for Alpha Streams, the strategy must be backtest over the most recent 5 years. Refer to our documentation here.
Best,
Derek Melchin
The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by QuantConnect. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. QuantConnect makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances. All investments involve risk, including loss of principal. You should consult with an investment professional before making any investment decisions.
To unlock posting to the community forums please complete at least 30% of Boot Camp.
You can continue your Boot Camp training progress from the terminal. We hope to see you in the community soon!