About Tiingo News Feed
The Tiingo News Feed dataset by Tiingo tracks US Equity news releases. The data covers 10,000 US Equities, starts in January 2014, and is delivered on a second frequency. This dataset is creating by Tiingo integrating over 120 different news providers into their platform.
This dataset depends on the US Equity Security Master dataset because the US Equity Security Master dataset contains information on splits, dividends, and symbol changes.
About Tiingo
Tiingo was founded by Rishi Singh in 2014. Tiingo goes beyond traditional news sources and focuses on finding rich, quality content written by knowledgeable writers. Their proprietary algorithms scan unstructured, non-traditional news and other information sources while tagging companies, topics, and assets. This refined system is backed by over ten years of research and development, and is written by former institutional quant traders. Because of this dedicated approach, Tiingo's News API is a trusted tool used by quant funds, hedge funds, pension funds, social media companies, and tech companies around the world.
About QuantConnect
QuantConnect was founded in 2012 to serve quants everywhere with the best possible algorithmic trading technology. Seeking to disrupt a notoriously closed-source industry, QuantConnect takes a radically open-source approach to algorithmic trading. Through the QuantConnect web platform, more than 50,000 quants are served every month.
Algorithm Example
from AlgorithmImports import *
from QuantConnect.DataSource import *
class TiingoNewsDataAlgorithm(QCAlgorithm):
current_holdings = 0
target_holdings = 0
# Custom word-score map to assign score for each word in article
word_scores = {'good': 1, 'great': 1, 'best': 1, 'growth': 1,
'bad': -1, 'terrible': -1, 'worst': -1, 'loss': -1}
def initialize(self) -> None:
self.set_start_date(2021, 1, 1)
self.set_end_date(2021, 6, 1)
self.set_cash(100000)
# Requesting Tiingo news data to obtain the updated news articles to calculate the sentiment score
self.aapl = self.add_equity("AAPL", Resolution.MINUTE).symbol
self.tiingo_symbol = self.add_data(TiingoNews, self.aapl).symbol
# Historical data
history = self.history(self.tiingo_symbol, 14, Resolution.DAILY)
self.debug(f"We got {len(history)} items from our history request")
def on_data(self, slice: Slice) -> None:
if slice.contains_key(self.tiingo_symbol):
# Assign a sentiment score to the news article by the word-score map
title_words = slice[self.tiingo_symbol].description.lower()
score = 0
for word, word_score in self.word_scores.items():
if word in title_words:
score += word_score
# Buy if aggregated sentiment score shows positive sentiment, sell vice versa
if score > 0:
self.target_holdings = 1
elif score < 0:
self.target_holdings = -1
# Buy or short sell if the sentiment has changed from our current holdings
if slice.contains_key(self.aapl) and self.current_holdings != self.target_holdings:
self.set_holdings(self.aapl, self.target_holdings)
self.current_holdings = self.target_holdings
Example Applications
The Tiingo News Feed enables you to accurately design strategies harnessing news articles on the companies you're trading. Examples include the following strategies:
- Creating a dictionary of sentiment scores for various words and assigning a sentiment score to the content of each news release
- Calculating the sentiment of news releases with Natural Language Processing (NLP)
- Trading securities when their news releases are tagged by Tiingo with current buzzwords
- Detecting impactful news in ETF constituents
Pricing
Cloud Access
Harness Tiingo News Feed data in the QuantConnect Cloud for your backtesting and live trading purposes.
On Premise Download
Tiingo News Feed archived in LEAN format for on premise backtesting and research. One file per ticker.
Explore Other Datasets
Cross Asset Model
Dataset by ExtractAlpha
Binance Crypto Price Data
Dataset by CoinAPI
VIX Central Contango
Dataset by VIX Central