Overall Statistics |
Total Orders
63276
Average Win
0.09%
Average Loss
-0.11%
Compounding Annual Return
-3.636%
Drawdown
87.200%
Expectancy
-0.029
Start Equity
100000
End Equity
39830.69
Net Profit
-60.169%
Sharpe Ratio
-0.121
Sortino Ratio
-0.119
Probabilistic Sharpe Ratio
0.000%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.82
Alpha
0
Beta
0
Annual Standard Deviation
0.21
Annual Variance
0.044
Information Ratio
-0.016
Tracking Error
0.21
Treynor Ratio
0
Total Fees
$937.40
Estimated Strategy Capacity
$5100000.00
Lowest Capacity Asset
DUO X95P0920YMW5
Portfolio Turnover
4.56%
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-stocks/ # # The investment universe consists of NYSE, AMEX, and NASDAQ stocks. We define momentum as the past 12-month return, skipping the most # recent month’s return (to avoid microstructure and liquidity biases). To capture “momentum”, UMD portfolio goes long stocks that have # high relative past one-year returns and short stocks that have low relative past one-year returns. # # QC implementation changes: # - Instead of all listed stock, we select top 500 stocks by market cap from QC stock universe. # region imports from AlgorithmImports import * from typing import List, Dict from pandas.core.frame import DataFrame # endregion class MomentumFactorEffectinStocks(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2000, 1, 1) self.set_cash(100_000) self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN) self.add_equity('SPY', Resolution.DAILY).symbol self.weight: Dict[Symbol, float] = {} self.data: Dict[Symbol, RollingWindow] = {} self.period: int = 12 * 21 self.quantile: int = 5 self.leverage: int = 5 self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE'] self.fundamental_count: int = 500 self.fundamental_sorting_key = lambda x: x.dollar_volume self.selection_flag: bool = False self.universe_settings.resolution = Resolution.DAILY self.add_universe(self.fundamental_selection_function) self.settings.daily_precise_end_time = False self.settings.minimum_order_margin_portfolio_percentage = 0. self._recent_month: int = -1 def on_securities_changed(self, changes: SecurityChanges) -> None: for security in changes.added_securities: security.set_fee_model(CustomFeeModel()) security.set_leverage(self.leverage) def fundamental_selection_function(self, fundamental: List[Fundamental]) -> List[Symbol]: # update the rolling window every day [self.data[stock.symbol].add(stock.adjusted_price) for stock in fundamental if stock.symbol in self.data] if self._recent_month == self.time.month: return Universe.UNCHANGED self._recent_month = self.time.month self.selection_flag = True selected: List[Fundamental] = [ x for x in fundamental if x.has_fundamental_data and x.market_cap != 0 and x.market == 'usa' and \ x.security_reference.exchange_id in self.exchange_codes ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # warmup price rolling windows for stock in selected: symbol: Symbol = stock.symbol if symbol not in self.data: self.data[symbol] = RollingWindow[float](self.period) history: DataFrame = self.history(symbol, self.period, Resolution.DAILY) if history.empty: self.log(f"Not enough data for {symbol} yet") continue closes: Series = history.loc[symbol].close for time, close in closes.items(): self.data[symbol].add(close) perf: Dict[Symbol, float] = { stock.symbol : self.data[stock.symbol][0] / self.data[stock.symbol][self.period - 1] - 1 for stock in selected if self.data[stock.symbol].is_ready } if len(perf) >= self.quantile: sorted_by_perf: List = sorted(perf, key=perf.get) quantile: int = int(len(sorted_by_perf) / self.quantile) long: List[Symbol] = sorted_by_perf[-quantile:] short: List[Symbol] = sorted_by_perf[:quantile] # calculate weights for i, portfolio in enumerate([long, short]): for symbol in portfolio: self.weight[symbol] = ((-1) ** i) / len(portfolio) return list(self.weight.keys()) def on_data(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # trade execution portfolio: List[PortfolioTarget] = [ PortfolioTarget(symbol, w) for symbol, w in self.weight.items() if slice.contains_key(symbol) ] self.set_holdings(portfolio, True) self.weight.clear() # Custom fee model. class CustomFeeModel(FeeModel): def get_order_fee(self, parameters): fee = parameters.security.price * parameters.order.absolute_quantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))