Overall Statistics |
Total Orders
16460
Average Win
0.40%
Average Loss
-0.42%
Compounding Annual Return
-4.126%
Drawdown
77.800%
Expectancy
-0.026
Start Equity
100000
End Equity
35275.12
Net Profit
-64.725%
Sharpe Ratio
-0.199
Sortino Ratio
-0.196
Probabilistic Sharpe Ratio
0.000%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
0.94
Alpha
-0.029
Beta
-0.14
Annual Standard Deviation
0.177
Annual Variance
0.031
Information Ratio
-0.309
Tracking Error
0.252
Treynor Ratio
0.252
Total Fees
$1571.22
Estimated Strategy Capacity
$16000000.00
Lowest Capacity Asset
CVLT TM78KLLUMAG5
Portfolio Turnover
8.12%
|
# https://quantpedia.com/strategies/momentum-factor-combined-with-asset-growth-effect/ # # The investment universe consists of NYSE, AMEX and NASDAQ stocks (data for the backtest in the source paper are from Compustat). # Stocks with a market capitalization less than the 20th NYSE percentile (smallest stocks) are removed. The asset growth variable # is defined as the yearly percentage change in balance sheet total assets. Data from year t-2 to t-1 are used to calculate asset # growth, and July is the cut-off month. Every month, stocks are then sorted into deciles based on asset growth and only stocks # with the highest asset growth are used. The next step is to sort stocks from the highest asset growth decile into quintiles, # based on their past 11-month return (with the last month’s performance skipped in the calculation). The investor then goes long # on stocks with the strongest momentum and short on stocks with the weakest momentum. The portfolio is equally weighted and is # rebalanced monthly. The investor holds long-short portfolios only during February-December -> January is excluded as this month # has been repeatedly documented as a negative month for a momentum strategy (see “January Effect Filter and Momentum in Stocks”). # # QC implementation changes: # - Universe consists of 1000 largest stocks traded on NYSE, AMEX, or NASDAQ. from AlgorithmImports import * import numpy as np from pandas.core.frame import DataFrame from pandas.core.series import Series class MomentumFactorAssetGrowthEffect(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.UniverseSettings.Leverage = 5 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0 self.settings.daily_precise_end_time = False self.exchange_codes: list[str] = ['NYS', 'NAS', 'ASE'] self.fundamental_count: int = 1_000 self.fundamental_sorting_key = lambda x: x.MarketCap self.months_in_year: int = 12 self.days_in_month: int = 21 self.total_assets_history_period: int = 2 self.decile: int = 10 self.quintile: int = 5 self.excluded_month: int = 1 # Monthly close prices and total assets self.symbol_data: dict[Symbol, SymbolData] = {} self.long_symbols: dict[Symbol] = [] self.short_symbols: dict[Symbol] = [] self.selection_flag: bool = False market: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.Schedule.On(self.DateRules.MonthStart(market), self.TimeRules.AfterMarketOpen(market), self.Selection) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged # Update the rolling window every month. for security in fundamental: if security.Symbol in self.symbol_data: self.symbol_data[security.Symbol].update_price(security.AdjustedPrice) filtered: list[Fundamental] = [f for f in fundamental if f.HasFundamentalData and f.SecurityReference.ExchangeId in self.exchange_codes and not np.isnan(f.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths) and f.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths > 0] sorted_filter: List[Fundamental] = sorted(filtered, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count] # Warmup price rolling windows. for f in sorted_filter: if f.Symbol in self.symbol_data: continue self.symbol_data[f.Symbol] = SymbolData(f.Symbol, self.months_in_year, self.total_assets_history_period) history: DataFrame = self.History(f.Symbol, self.months_in_year * self.days_in_month, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {f.Symbol} yet.") continue closes: Series = history.loc[f.Symbol].close # Find monthly closes. for index, time_close in enumerate(closes.items()): # index out of bounds check. if index + 1 < len(closes.keys()): date_month = time_close[0].date().month next_date_month = closes.keys()[index + 1].month # Find last day of month. if date_month != next_date_month: self.symbol_data[f.Symbol].update_price(time_close[1]) ready_securities: list[Fundamental] = [x for x in sorted_filter if self.symbol_data[x.Symbol].price_is_ready()] # Asset growth calc. asset_growth: dict[Symbol, float] = {} for security in ready_securities: if self.symbol_data[security.Symbol].asset_data_is_ready(): asset_growth[security.Symbol] = self.symbol_data[security.Symbol].asset_growth() self.symbol_data[security.Symbol].update_assets(security.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths) sorted_by_growth: list[tuple[Symbol, float]] = sorted(asset_growth.items(), key=lambda x: x[1], reverse=True) decile: int = int(len(sorted_by_growth) / self.decile) top_by_growth: list[Symbol] = [x[0] for x in sorted_by_growth][:decile] performance: dict[Symbol, float] = {x: self.symbol_data[x].performance() for x in top_by_growth} sorted_by_performance: list[tuple[Symbol, float]] = sorted(performance.items(), key=lambda x: x[1], reverse=True) quintile = int(len(sorted_by_performance) / self.quintile) self.long_symbols = [x[0] for x in sorted_by_performance][:quintile] self.short_symbols = [x[0] for x in sorted_by_performance][-quintile:] return self.long_symbols + self.short_symbols def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution. targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long_symbols, self.short_symbols]): for symbol in portfolio: if slice.ContainsKey(symbol) and slice[symbol] is not None: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long_symbols.clear() self.short_symbols.clear() def Selection(self) -> None: # Exclude January trading. if self.Time.month != self.excluded_month: self.selection_flag = True else: self.Liquidate() class SymbolData(): def __init__(self, symbol: Symbol, period: int, total_assets_history_period: int) -> None: self.Symbol: Symbol = symbol self.Price: RollingWindow = RollingWindow[float](period) self.TotalAssets: RollingWindow = RollingWindow[float](total_assets_history_period) def update_price(self, value) -> None: self.Price.Add(value) def update_assets(self, assets_value) -> None: self.TotalAssets.Add(assets_value) def asset_data_is_ready(self) -> bool: return self.TotalAssets.IsReady def asset_growth(self) -> float: asset_values: list[float] = [x for x in self.TotalAssets] return (asset_values[0] - asset_values[1]) / asset_values[1] def price_is_ready(self) -> bool: return self.Price.IsReady # Performance, one month skipped. def performance(self, values_to_skip: int = 1) -> float: closes: list[float] = [x for x in self.Price][values_to_skip:] return (closes[0] / closes[-1] - 1) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))