Overall Statistics
Total Orders
2821
Average Win
1.35%
Average Loss
-0.96%
Compounding Annual Return
9.632%
Drawdown
54.200%
Expectancy
0.192
Start Equity
100000
End Equity
990784.01
Net Profit
890.784%
Sharpe Ratio
0.341
Sortino Ratio
0.415
Probabilistic Sharpe Ratio
0.047%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.40
Alpha
0.061
Beta
-0.028
Annual Standard Deviation
0.175
Annual Variance
0.031
Information Ratio
0.066
Tracking Error
0.239
Treynor Ratio
-2.125
Total Fees
$4132.97
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_PA1.QuantpediaFutures 2S
Portfolio Turnover
2.98%
# https://quantpedia.com/strategies/skewness-effect-in-commodities/
#
# The investment universe consists of 27 futures contracts on commodities. Each month, investor calculates skewness (3rd moment of returns) 
# from daily returns from data going 12 months into the past for all futures. Commodities are then sorted into quintiles and investor goes 
# long quintile containing the commodities with the 20% lowest total skewness and short quintile containing the commodities with the 20% highest
# total skewness (over a ranking period of 12 months). The resultant portfolio is equally weighted and rebalanced each month.

import numpy as np
from AlgorithmImports import *
from scipy.stats import skew

class SkewnessEffect(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2000, 1, 1)
        self.SetCash(100000)
        
        self.symbols = [
            "CME_S1",   # Soybean Futures, Continuous Contract
            "CME_W1",   # Wheat Futures, Continuous Contract
            "CME_SM1",  # Soybean Meal Futures, Continuous Contract
            "CME_BO1",  # Soybean Oil Futures, Continuous Contract
            "CME_C1",   # Corn Futures, Continuous Contract
            "CME_O1",   # Oats Futures, Continuous Contract
            "CME_LC1",  # Live Cattle Futures, Continuous Contract
            "CME_FC1",  # Feeder Cattle Futures, Continuous Contract
            "CME_LN1",  # Lean Hog Futures, Continuous Contract
            "CME_GC1",  # Gold Futures, Continuous Contract
            "CME_SI1",  # Silver Futures, Continuous Contract
            "CME_PL1",  # Platinum Futures, Continuous Contract
            "CME_CL1",  # Crude Oil Futures, Continuous Contract
            "CME_HG1",  # Copper Futures, Continuous Contract
            "CME_LB1",  # Random Length Lumber Futures, Continuous Contract
            # "CME_NG1",  # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
            "CME_PA1",  # Palladium Futures, Continuous Contract 
            "CME_RR1",  # Rough Rice Futures, Continuous Contract
            "CME_DA1",  # Class III Milk Futures

            "ICE_RS1",  # Canola Futures, Continuous Contract
            "ICE_GO1",  # Gas Oil Futures, Continuous Contract
            "CME_RB2",  # Gasoline Futures, Continuous Contract
            "CME_KW2",  # Wheat Kansas, Continuous Contract
            "ICE_WT1",  # WTI Crude Futures, Continuous Contract
            "ICE_CC1",  # Cocoa Futures, Continuous Contract 
            "ICE_CT1",  # Cotton No. 2 Futures, Continuous Contract
            "ICE_KC1",  # Coffee C Futures, Continuous Contract
            "ICE_O1",   # Heating Oil Futures, Continuous Contract
            "ICE_OJ1",  # Orange Juice Futures, Continuous Contract
            "ICE_SB1",  # Sugar No. 11 Futures, Continuous Contract
        ]
        
        self.period = 12 * 21
        self.quantile = 5
        self.SetWarmup(self.period)
        self.data = {}
        
        for symbol in self.symbols:
            data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
            data.SetFeeModel(CustomFeeModel())
            data.SetLeverage(5)

            self.data[symbol] = RollingWindow[float](self.period)
            
        self.rebalance_flag: bool = False
        self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.At(0, 0), self.Rebalance)
    
    def OnData(self, data):
        for symbol in self.symbols:
            symbol_obj = self.Symbol(symbol)
            if symbol_obj in data.Keys:
                price = data[symbol_obj].Value
                if price != 0:
                    self.data[symbol].Add(price)
                
        if self.IsWarmingUp: return
    
        if not self.rebalance_flag:
            return
        self.rebalance_flag = False

        # Skewness calculation
        skewness_data = {}
        for symbol in self.symbols:
            if self.data[symbol].IsReady:
                if self.Securities[symbol].GetLastData() and self.Time.date() < QuantpediaFutures.get_last_update_date()[symbol]:
                    prices = np.array([x for x in self.data[symbol]])
                    returns = (prices[:-1] / prices[1:]) - 1
                    if len(returns) == self.period - 1:
                        # NOTE: Manual skewness calculation example
                        # avg = np.average(returns)
                        # std = np.std(returns)
                        # skewness = (sum(np.power((x - avg), 3) for x in returns)) / ((self.return_history[symbol].maxlen-1) * np.power(std, 3))
                        skewness_data[symbol] = skew(returns)
        
        long = []
        short = []
        if len(skewness_data) >= self.quantile:
            # Skewness sorting
            sorted_by_skewness = sorted(skewness_data.items(), key = lambda x: x[1], reverse = True)
            quintile = int(len(sorted_by_skewness) / self.quantile)
            long = [x[0] for x in sorted_by_skewness[-quintile:]]
            short = [x[0] for x in sorted_by_skewness[:quintile]]
        
        # Trade execution
        invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
        for symbol in invested:
            if symbol not in long + short:
                self.Liquidate(symbol)
        
        for symbol in long:
            if data.contains_key(symbol) and data[symbol]:
                self.SetHoldings(symbol, 1 / len(long))
        for symbol in short:
            if data.contains_key(symbol) and data[symbol]:
                self.SetHoldings(symbol, -1 / len(short))

    def Rebalance(self):
        self.rebalance_flag = True

# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
    _last_update_date:Dict[Symbol, datetime.date] = {}

    @staticmethod
    def get_last_update_date() -> Dict[Symbol, datetime.date]:
       return QuantpediaFutures._last_update_date

    def GetSource(self, config, date, isLiveMode):
        return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)

    def Reader(self, config, line, date, isLiveMode):
        data = QuantpediaFutures()
        data.Symbol = config.Symbol
        
        if not line[0].isdigit(): return None
        split = line.split(';')
        
        data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
        data['back_adjusted'] = float(split[1])
        data['spliced'] = float(split[2])
        data.Value = float(split[1])

        if config.Symbol.Value not in QuantpediaFutures._last_update_date:
            QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
        if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]:
            QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date()

        return data

# Custom fee model.
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))