Overall Statistics |
Total Trades
49966
Average Win
0.09%
Average Loss
-0.10%
Compounding Annual Return
0.090%
Drawdown
62.000%
Expectancy
0.001
Net Profit
2.158%
Sharpe Ratio
0.098
Probabilistic Sharpe Ratio
0.000%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.88
Alpha
0.047
Beta
-0.469
Annual Standard Deviation
0.187
Annual Variance
0.035
Information Ratio
-0.142
Tracking Error
0.292
Treynor Ratio
-0.039
Total Fees
$2333.98
Estimated Strategy Capacity
$50000000.00
Lowest Capacity Asset
UDR R735QTJ8XC9X
Portfolio Turnover
4.27%
|
# https://quantpedia.com/strategies/52-weeks-high-effect-in-stocks/ # # The investment universe consists of all stocks from NYSE, AMEX and NASDAQ (the research paper used the CRSP # database for backtesting). The ratio between the current price and 52-week high is calculated for each stock # at the end of each month (PRILAG i,t = Price i,t / 52-Week High i,t). Every month, the investor then calculates # the weighted average of ratios (PRILAG i,t) from all firms in each industry (20 industries are used), where the # weight is the market capitalization of the stock at the end of month t. The winners (losers) are stocks in the # six industries with the highest (lowest) weighted averages of PRILAGi,t. The investor buys stocks in the winner # portfolio and shorts stocks in the loser portfolio and holds them for three months. Stocks are weighted equally # and the portfolio is rebalanced monthly (which means that 1/3 of the portfolio is rebalanced each month). # # QC implementation changes: # - Universe consists of 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ. from numpy import floor from AlgorithmImports import * from typing import List, Dict, Tuple class Weeks52HighEffectinStocks(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.period:int = 12 * 21 # Tranching. self.holding_period:int = 3 self.managed_queue:List[RebalanceQueueItem] = [] self.industry_count:int = 6 self.leverage:int = 5 # Daily 'high' data. self.data:Dict[Symbol, SymbolData] = {} self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.coarse_count:int = 500 self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection) def OnSecuritiesChanged(self, changes:SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def CoarseSelectionFunction(self, coarse:List[CoarseFundamental]) -> List[Symbol]: # Update the rolling window every day. for stock in coarse: symbol:Symbol = stock.Symbol if symbol in self.data: # Store daily price. self.data[symbol].update(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged selected:List[Symbol] = [x.Symbol for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'], key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]] # Warmup price rolling windows. for symbol in selected: if symbol in self.data: continue self.data[symbol] = SymbolData(symbol, self.period) history:DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet") continue closes:pd.Series = history.loc[symbol].close for time, close in closes.iteritems(): self.data[symbol].update(close) return [x for x in selected if self.data[x].is_ready()] def FineSelectionFunction(self, fine:List[FineFundamental]) -> List[Symbol]: fine:List[Symbol] = [x for x in fine if x.MarketCap != 0 and \ ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))] group:Dict[int, float] = {} for stock in fine: symbol:Symbol = stock.Symbol industry_group_code:MorningstarIndustryGroupCode = stock.AssetClassification.MorningstarIndustryGroupCode if industry_group_code == 0: continue # Adding stocks in groups. if not industry_group_code in group: group[industry_group_code] = [] max_high:float = self.data[symbol].maximum() price:float = self.data[symbol].get_latest_price() stock_prilag:float = (stock, price / max_high) group[industry_group_code].append(stock_prilag) top_industries:List[MorningstarIndustryGroupCode] = [] low_industries:List[MorningstarIndustryGroupCode] = [] if len(group) != 0: # Weighted average of ratios calc. industry_prilag_weighted_avg:Dict[int, float] = {} for industry_code in group: total_market_cap:float = sum([stock_prilag_data[0].MarketCap for stock_prilag_data in group[industry_code]]) if total_market_cap == 0: continue industry_prilag_weighted_avg[industry_code] = sum([stock_prilag_data[1] * (stock_prilag_data[0].MarketCap / total_market_cap) for stock_prilag_data in group[industry_code]]) if len(industry_prilag_weighted_avg) != 0: # Weighted average industry sorting. sorted_by_weighted_avg:List = sorted(industry_prilag_weighted_avg.items(), key=lambda x: x[1], reverse = True) top_industries = [x[0] for x in sorted_by_weighted_avg[:self.industry_count]] low_industries = [x[0] for x in sorted_by_weighted_avg[-self.industry_count:]] long:List[Symbol] = [] short:List[Symbol] = [] for industry_code in top_industries: for stock_prilag_data in group[industry_code]: symbol:Symbol = stock_prilag_data[0].Symbol long.append(symbol) for industry_code in low_industries: for stock_prilag_data in group[industry_code]: symbol:Symbol = stock_prilag_data[0].Symbol short.append(symbol) long_w:float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(long) short_w:float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(short) # symbol/quantity collection long_symbol_q:List[Tuple[Union[Symbol, int]]] = [(x, floor(long_w / self.data[x].get_latest_price())) for x in long] short_symbol_q:List[Tuple[Union[Symbol, int]]] = [(x, -floor(short_w / self.data[x].get_latest_price())) for x in short] self.managed_queue.append(RebalanceQueueItem(long_symbol_q + short_symbol_q)) return long + short def OnData(self, data:Slice) -> None: if not self.selection_flag: return self.selection_flag = False remove_item:int = None # Rebalance portfolio for item in self.managed_queue: if item.holding_period == self.holding_period: # Liquidate for symbol, quantity in item.symbol_q: self.MarketOrder(symbol, -quantity) remove_item = item # Trade execution if item.holding_period == 0: open_symbol_q:List[Tuple[Symbol, int]] = [] for symbol, quantity in item.symbol_q: if symbol in data and data[symbol]: self.MarketOrder(symbol, quantity) open_symbol_q.append((symbol, quantity)) # Only opened orders will be closed item.symbol_q = open_symbol_q item.holding_period += 1 # We need to remove closed part of portfolio after loop. Otherwise it will miss one item in self.managed_queue. if remove_item: self.managed_queue.remove(remove_item) def Selection(self) -> None: self.selection_flag = True class RebalanceQueueItem(): def __init__(self, symbol_q:Tuple[Symbol, int]) -> None: # symbol/quantity collections self.symbol_q:Tuple[Symbol, int] = symbol_q self.holding_period:int = 0 class SymbolData(): def __init__(self, symbol:Symbol, period:int) -> None: self.Symbol:Symbol = symbol self.Price:RollingWindow = RollingWindow[float](period) def update(self, value:float) -> None: self.Price.Add(value) def is_ready(self) -> bool: return self.Price.IsReady def maximum(self) -> float: return max([x for x in self.Price]) def get_latest_price(self) -> float: return [x for x in self.Price][0] # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))