Overall Statistics |
Total Orders
227008
Average Win
0.01%
Average Loss
-0.01%
Compounding Annual Return
12.822%
Drawdown
34.000%
Expectancy
0.219
Start Equity
100000
End Equity
588047.63
Net Profit
488.048%
Sharpe Ratio
0.598
Sortino Ratio
0.615
Probabilistic Sharpe Ratio
7.744%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.26
Alpha
0.003
Beta
0.893
Annual Standard Deviation
0.135
Annual Variance
0.018
Information Ratio
-0.135
Tracking Error
0.047
Treynor Ratio
0.09
Total Fees
$9871.12
Estimated Strategy Capacity
$120000000.00
Lowest Capacity Asset
SNAP WIINL6RMFSKL
Portfolio Turnover
15.04%
|
# https://quantpedia.com/strategies/trend-following-effect-in-stocks/ # # The investment universe consists of US-listed companies. A minimum stock price filter is used to avoid penny stocks, and a minimum # daily liquidity filter is used to avoid stocks that are not liquid enough. The entry signal occurs if today’s close is greater than # or equal to the highest close during the stock’s entire history. A 10-period average true range trailing stop is used as an exit # signal. The investor holds all stocks which satisfy entry criterion and are not stopped out. The portfolio is equally weighted and # rebalanced daily. Transaction costs of 0.5% round-turn are deducted from each trade to account for estimated commission and slippage. # # QC implementation changes: # - The investment universe consists of 100 most liquid US stocks with price >= 5$. import numpy as np from AlgorithmImports import * class TrendFollowingEffectinStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetCash(100_000) self.fundamental_count: int = 100 self.fundamental_sorting_key = lambda x: x.DollarVolume self.long :List[Symbol] = [] self.max_close: Dict[Symbol, float] = {} self.atr: Dict[Symbol, AverageTrueRange] = {} self.atr_period: int = 10 self.sl_order: Dict[Symbol, OrderTicket] = {} self.sl_price: Dict[Symbol, float] = {} self.selection: List[Symbol] = [] self.period: int = 10*12*21 self.min_share_price: float = 5. self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) symbol = security.Symbol if symbol not in self.atr: self.atr[symbol] = self.ATR(symbol, self.atr_period, Resolution.Daily) if symbol not in self.max_close: hist = self.History([self.Symbol(symbol)], self.period, Resolution.Daily) if 'close' in hist.columns: closes:pd.Series = hist['close'] self.max_close[symbol] = max(closes) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> None: selected: List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Price >= self.min_share_price ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] self.selection = list(map(lambda x: x.Symbol, selected)) return self.selection def OnData(self, slice: Slice) -> None: if self.IsWarmingUp: return for symbol in self.selection: if symbol in slice.Bars: price:float = slice[symbol].Value if symbol not in self.max_close: continue if price >= self.max_close[symbol]: self.max_close[symbol] = price self.long.append(symbol) stocks_invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] count: int = len(self.long) + len(stocks_invested) if count == 0: return # Update stoploss orders for symbol in stocks_invested: if not self.Securities[symbol].IsTradable: self.Liquidate(symbol) if self.atr[symbol].Current.Value == 0: continue # Move SL if symbol not in self.sl_price: continue self.SetHoldings(symbol, 1 / count) new_sl: float = self.Securities[symbol].Price - self.atr[symbol].Current.Value if new_sl > self.sl_price[symbol]: update_order_fields = UpdateOrderFields() update_order_fields.StopPrice = new_sl # Update SL price quantity:float = self.CalculateOrderQuantity(symbol, (1 / count)) update_order_fields.Quantity = quantity # Update SL quantity self.sl_price[symbol] = new_sl self.sl_order[symbol].Update(update_order_fields) # Open new trades for symbol in self.long: if not self.Portfolio[symbol].Invested and self.atr[symbol].Current.Value != 0: price: float = slice[symbol].Value if self.Securities[symbol].IsTradable: unit_size: float = self.CalculateOrderQuantity(symbol, (1 / count)) self.MarketOrder(symbol, unit_size) sl_price: float = price - self.atr[symbol].Current.Value self.sl_price[symbol] = sl_price if unit_size != 0: self.sl_order[symbol] = self.StopMarketOrder(symbol, -unit_size, sl_price, 'SL') self.long.clear() # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))