Overall Statistics |
Total Orders
20365
Average Win
0.15%
Average Loss
-0.14%
Compounding Annual Return
4.336%
Drawdown
32.400%
Expectancy
0.076
Start Equity
100000
End Equity
288266.87
Net Profit
188.267%
Sharpe Ratio
0.15
Sortino Ratio
0.179
Probabilistic Sharpe Ratio
0.103%
Loss Rate
48%
Win Rate
52%
Profit-Loss Ratio
1.07
Alpha
0.01
Beta
-0.001
Annual Standard Deviation
0.064
Annual Variance
0.004
Information Ratio
-0.201
Tracking Error
0.171
Treynor Ratio
-7.423
Total Fees
$775.04
Estimated Strategy Capacity
$2000.00
Lowest Capacity Asset
GATE XTQ56K4YHZL1
Portfolio Turnover
0.90%
|
# https://quantpedia.com/strategies/asset-growth-effect/ # # The investment universe consists of all non-financial U.S. stocks listed on NYSE, AMEX, and NASDAQ. Stocks are then sorted each year at the end # of June into ten equal groups based on the percentage change in total assets for the previous year. The investor goes long decile with low asset # growth firms and short decile with high asset growth firms. The portfolio is weighted equally and rebalanced every year. # # QC implementation changes: # - The investment universe consists of 3000 largest US stocks listed on NYSE, AMEX, and NASDAQ. #region imports from AlgorithmImports import * import numpy as np #endregion class AssetGrowthEffect(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.UniverseSettings.Leverage = 5 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalFunction) self.settings.daily_precise_end_time = False self.settings.minimum_order_margin_portfolio_percentage = 0. # Latest assets data. self.total_assets: dict[Symbol, float] = {} self.long_symbols: list[Symbol] = [] self.short_symbols: list[Symbol] = [] self.selection_flag: bool = False # Filter Parameters self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE'] self.quantile: int = 10 self.rebalancing_month: int = 6 self.min_share_price: float = 5. # self.fin_sector_code: int = 103 self.fundamental_count:int = 3000 self.fundamental_sorting_key = lambda x: x.MarketCap self.exchange: Symbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.Schedule.On(self.DateRules.MonthEnd(self.exchange), self.TimeRules.AfterMarketOpen(self.exchange), self.Selection) def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged filtered: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData and f.SecurityReference.ExchangeId in self.exchange_codes and f.Price >= self.min_share_price # and f.AssetClassification.MorningstarSectorCode != self.fin_sector_code and not np.isnan(f.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths) and f.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths > 0] if len(filtered) > self.fundamental_count: filtered = [x for x in sorted(filtered, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] assets_growth: dict[Symbol, float] = {} for security in filtered: symbol: Symbol = security.Symbol if symbol not in self.total_assets: self.total_assets[symbol] = None current_assets: float = security.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths # There is not previous assets data. if not self.total_assets[symbol]: self.total_assets[symbol] = current_assets continue # Assets growth calc. assets_growth[symbol] = (current_assets - self.total_assets[symbol]) / self.total_assets[symbol] # Update data. self.total_assets[symbol] = current_assets # Asset growth sorting. if len(assets_growth) >= self.quantile: sorted_by_assets_growth: dict[Symbol, float] = sorted(assets_growth.items(), key = lambda x: x[1], reverse = True) quantile: int = int(len(sorted_by_assets_growth) / self.quantile) self.long_symbols = [x[0] for x in sorted_by_assets_growth[-quantile:]] self.short_symbols = [x[0] for x in sorted_by_assets_growth[:quantile]] return self.long_symbols + self.short_symbols def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution. targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long_symbols, self.short_symbols]): for symbol in portfolio: if slice.ContainsKey(symbol) and slice[symbol] is not None: targets.append(PortfolioTarget( symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long_symbols.clear() self.short_symbols.clear() def Selection(self) -> None: if self.Time.month == self.rebalancing_month: self.selection_flag = True def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))