Overall Statistics |
Total Orders
28463
Average Win
0.16%
Average Loss
-0.13%
Compounding Annual Return
-1.963%
Drawdown
54.800%
Expectancy
-0.014
Start Equity
100000
End Equity
60993.82
Net Profit
-39.006%
Sharpe Ratio
-0.284
Sortino Ratio
-0.298
Probabilistic Sharpe Ratio
0.000%
Loss Rate
55%
Win Rate
45%
Profit-Loss Ratio
1.20
Alpha
-0.032
Beta
0.032
Annual Standard Deviation
0.106
Annual Variance
0.011
Information Ratio
-0.397
Tracking Error
0.187
Treynor Ratio
-0.938
Total Fees
$3092.80
Estimated Strategy Capacity
$2000000000.00
Lowest Capacity Asset
PENN R735QTJ8XC9X
Portfolio Turnover
8.08%
|
# https://quantpedia.com/strategies/earnings-announcement-premium/ # # The investment universe consists of all stocks from the CRSP database. At the beginning of every calendar month, stocks are ranked in ascending # order on the basis of the volume concentration ratio, which is defined as the volume of the previous 16 announcement months divided by the total # volume in the previous 48 months. The ranked stocks are assigned to one of 5 quintile portfolios. Within each quintile, stocks are assigned to # one of two portfolios (expected announcers and expected non-announcers) using the predicted announcement based on the previous year. All stocks # are value-weighted within a given portfolio, and portfolios are rebalanced every calendar month to maintain value weights. The investor invests # in a long-short portfolio, which is a zero-cost portfolio that holds the portfolio of high volume expected announcers and sells short the # portfolio of high volume expected non-announcers. # # QC implementation changes: # - The investment universe consists of 1000 most liquid stocks traded on NYSE, AMEX, or NASDAQ. from collections import deque from AlgorithmImports import * from typing import List, Dict, Tuple class EarningsAnnouncementPremium(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.period:int = 21 self.month_period:int = 48 self.leverage:int = 10 self.quantile:int = 5 self.selection_sorting_key = lambda x: x.dollar_volume # Volume daily data. self.data:Dict[Symbol, RollingWindow[float]] = {} # Volume monthly data. self.monthly_volume:Dict[Symbol, float] = {} self.fundamental_count:int = 1000 self.weight:Dict[Symbol, float] = {} self.selection_flag:bool = True self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # Update the rolling window every day. for stock in fundamental: symbol:Symbol = stock.Symbol # Store monthly price. if symbol in self.data: self.data[symbol].Add(stock.Volume) if not self.selection_flag: return Universe.Unchanged selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and \ ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))] if len(selected) > self.fundamental_count: selected = [x for x in sorted([x for x in selected], key = self.selection_sorting_key, reverse = True)[:self.fundamental_count]] fine_symbols:List[Symbol] = [x.Symbol for x in selected] volume_concentration_ratio:Dict[Fundamental, float] = {} # Warmup volume rolling windows. for stock in selected: symbol:Symbol = stock.Symbol # Warmup data. if symbol not in self.data: self.data[symbol] = RollingWindow[float](self.period) history:DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Debug(f"No history for {symbol} yet") continue if 'volume' not in history.columns: continue volumes:Series = history.loc[symbol].volume for _, volume in volumes.items(): self.data[symbol].Add(volume) # Ratio/market cap pair. if not self.data[symbol].IsReady: continue if symbol not in self.monthly_volume: self.monthly_volume[symbol] = deque(maxlen = self.month_period) monthly_vol:float = sum([x for x in self.data[symbol]]) last_month_date:datetime = self.Time - timedelta(days = self.Time.day) last_file_date:datetime = stock.EarningReports.FileDate.Value # stock annoucement day was_announcement_month:Tuple[int] = (last_file_date.year == last_month_date.year and last_file_date.month == last_month_date.month) # Last month was announcement date. self.monthly_volume[symbol].append(VolumeData(last_month_date, monthly_vol, was_announcement_month)) # 48 months of volume data is ready. if len(self.monthly_volume[symbol]) == self.monthly_volume[symbol].maxlen: # Volume concentration ratio calc. announcement_count:int = 12 announcement_volumes:List[float] = [x.Volume for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth][-announcement_count:] if len(announcement_volumes) == announcement_count: announcement_months_volume:float = sum(announcement_volumes) total_volume:float = sum([x.Volume for x in self.monthly_volume[symbol]]) if announcement_months_volume != 0 and total_volume != 0: # Store ratio, market cap pair. volume_concentration_ratio[stock] = announcement_months_volume / total_volume # Volume sorting. if len(volume_concentration_ratio) > self.quantile: sorted_by_volume:List[Tuple[Fundamental, float]] = sorted(volume_concentration_ratio.items(), key = lambda x: x[1], reverse=True) quintile:int = int(len(sorted_by_volume) / self.quantile) high_volume:List[Fundamental] = [x[0] for x in sorted_by_volume[:quintile]] # Filering announcers and non-announcers. month_to_lookup:int = self.Time.month year_to_lookup:int = self.Time.year - 1 long:List[Fundamental] = [] short:List[Fundamental] = [] for stock in high_volume: symbol:Symbol = stock.Symbol announcement_dates:List[List[int]] = [[x.Date.year, x.Date.month] for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth] if [year_to_lookup, month_to_lookup] in announcement_dates: long.append(stock) else: short.append(stock) # Delete not updated symbols. symbols_to_remove:List[Symbol] = [] for symbol in self.monthly_volume: if symbol not in fine_symbols: symbols_to_remove.append(symbol) for symbol in symbols_to_remove: del self.monthly_volume[symbol] # Market cap weighting. for i, portfolio in enumerate([long, short]): mc_sum:float = sum(list(map(lambda stock: stock.MarketCap , portfolio))) for stock in portfolio: self.weight[stock.Symbol] = (((-1)**i) * stock.MarketCap / mc_sum) return list(self.weight.keys()) def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution. portfolio:List[PortfolioTarget] = [PortfolioTarget(symbol, w) for symbol, w in self.weight.items() if symbol in data and data[symbol]] self.SetHoldings(portfolio, True) self.weight.clear() def Selection(self) -> None: self.selection_flag = True # Monthly volume data. class VolumeData(): def __init__(self, date, monthly_volume, was_announcement_month): self.Date = date self.Volume = monthly_volume self.WasAnnouncementMonth = was_announcement_month # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))