Overall Statistics |
Total Orders
9506
Average Win
0.18%
Average Loss
-0.19%
Compounding Annual Return
0.463%
Drawdown
22.200%
Expectancy
0.003
Start Equity
100000
End Equity
112174.93
Net Profit
12.175%
Sharpe Ratio
-0.347
Sortino Ratio
-0.427
Probabilistic Sharpe Ratio
0.000%
Loss Rate
49%
Win Rate
51%
Profit-Loss Ratio
0.95
Alpha
-0.015
Beta
-0.072
Annual Standard Deviation
0.051
Annual Variance
0.003
Information Ratio
-0.34
Tracking Error
0.177
Treynor Ratio
0.244
Total Fees
$315.25
Estimated Strategy Capacity
$370000000.00
Lowest Capacity Asset
GPI R735QTJ8XC9X
Portfolio Turnover
0.62%
|
# https://quantpedia.com/strategies/earnings-quality-factor/ # # The investment universe consists of all non-financial stocks from NYSE, Amex and Nasdaq. Big stocks are defined as the largest stocks # that make up 90% of the total market cap within the region, while small stocks make up the remaining 10% of the market cap. Investor defines # breakpoints by the 30th and 70th percentiles of the multiple “Earnings Quality” ratios between large caps and small caps. # The first “Earnings Quality” ratio is defined by cash flow relative to reported earnings. The high-quality earnings firms are characterized # by high cash flows (relative to reported earnings) while the low-quality firms are characterized by high reported earnings (relative to cash flow). # The second factor is based on return on equity (ROE) to exploit the well-documented “profitability anomaly” by going long high-ROE firms # (top 30%) and short low-ROE firms (bottom 30%). The third ratio – CF/A (cash flow to assets) factor goes long firms with high cash flow to total assets. # The fourth ratio – D/A (debt to assets) factor goes long firms with low leverage and short firms with high leverage. # The investor builds a scored composite quality metric by computing the percentile score of each stock on each of the four quality metrics # (where “good” quality has a high score, so ideally a stock has low accruals, low leverage, high ROE, and high cash flow) and then add up # the percentiles to get a score for each stock from 0 to 400. He then forms the composite factor by going long the top 30% of small-cap # stocks and also large-cap stocks and short the bottom 30% of the small-cap stocks and also large-cap stocks and cap-weighting individual # stocks within the portfolios. The final factor portfolio is formed at the end of each June and is rebalanced yearly. # # QC implementation changes: # - Universe consists of 500 most liquid US non-financial stocks by market cap from NYSE, AMEX and NASDAQ. #region imports from AlgorithmImports import * import numpy as np from typing import List, Dict from numpy import isnan from dataclasses import dataclass #endregion class EarningsQualityFactor(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE'] self.tickers_to_ignore: List[str] = ['TOPS', 'CRW'] self.fundamental_count = 500 self.fundamental_sorting_key = lambda x: x.DollarVolume self.leverage: int = 10 self.quantile: int = 3 self.rebalance_month: int = 7 market: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.accruals_data: Dict[Symbol, AcrrualsData] = {} self.long: List[Symbol] = [] self.short: List[Symbol] = [] self.data: Dict[Symbol, StockData] = {} self.selection_flag: bool = True self.UniverseSettings.Leverage = self.leverage self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.Schedule.On(self.DateRules.MonthEnd(market), self.TimeRules.AfterMarketOpen(market), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged selected: List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and x.SecurityReference.ExchangeId in self.exchange_codes and x.CompanyReference.IndustryTemplateCode != "B" and not isnan(x.FinancialStatements.BalanceSheet.CurrentAssets.Value) and x.FinancialStatements.BalanceSheet.CurrentAssets.Value != 0 and not isnan(x.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value) and x.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value != 0 and not isnan(x.FinancialStatements.BalanceSheet.CurrentLiabilities.Value) and x.FinancialStatements.BalanceSheet.CurrentLiabilities.Value != 0 and not isnan(x.FinancialStatements.BalanceSheet.CurrentDebt.Value) and x.FinancialStatements.BalanceSheet.CurrentDebt.Value != 0 and not isnan(x.FinancialStatements.IncomeStatement.DepreciationAndAmortization.Value) and x.FinancialStatements.IncomeStatement.DepreciationAndAmortization.Value != 0 and not isnan(x.FinancialStatements.BalanceSheet.GrossPPE.Value) and x.FinancialStatements.BalanceSheet.GrossPPE.Value != 0 and not isnan(x.FinancialStatements.IncomeStatement.TotalRevenueAsReported.Value ) and x.FinancialStatements.IncomeStatement.TotalRevenueAsReported.Value != 0 and not isnan(x.FinancialStatements.CashFlowStatement.OperatingCashFlow.Value) and x.FinancialStatements.CashFlowStatement.OperatingCashFlow.Value != 0 and not isnan(x.EarningReports.BasicEPS.Value) and x.EarningReports.BasicEPS.Value != 0 and not isnan(x.EarningReports.BasicAverageShares.Value) and x.EarningReports.BasicAverageShares.Value != 0 and not isnan(x.operation_ratios.debt_to_assets.Value) and x.operation_ratios.debt_to_assets.Value != 0 and not isnan(x.OperationRatios.ROE.Value) and x.OperationRatios.ROE.Value != 0 and x.Symbol.Value not in self.tickers_to_ignore ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] for stock in selected: symbol = stock.Symbol if symbol not in self.accruals_data: # Data for previous year. self.accruals_data[symbol] = None # Accrual calc. current_accruals_data: AcrrualsData = AcrrualsData(stock.FinancialStatements.BalanceSheet.CurrentAssets.Value, stock.FinancialStatements.BalanceSheet.CashAndCashEquivalents.Value, stock.FinancialStatements.BalanceSheet.CurrentLiabilities.Value, stock.FinancialStatements.BalanceSheet.CurrentDebt.Value, stock.FinancialStatements.BalanceSheet.IncomeTaxPayable.Value, stock.FinancialStatements.IncomeStatement.DepreciationAndAmortization.Value, stock.FinancialStatements.BalanceSheet.TotalAssets.Value, stock.FinancialStatements.IncomeStatement.TotalRevenueAsReported.Value) # There is not previous accruals data. if not self.accruals_data[symbol]: self.accruals_data[symbol] = current_accruals_data continue current_accruals: float = self.CalculateAccruals(current_accruals_data, self.accruals_data[symbol]) # cash flow to assets CFA: float = stock.FinancialStatements.CashFlowStatement.OperatingCashFlow.Value / (stock.EarningReports.BasicEPS.Value * stock.EarningReports.BasicAverageShares.Value) # debt to assets DA: float = stock.operation_ratios.debt_to_assets.Value # return on equity ROE: float = stock.OperationRatios.ROE.Value if symbol not in self.data: self.data[symbol] = None self.data[symbol] = StockData(current_accruals, CFA, DA, ROE) self.accruals_data[symbol] = current_accruals_data # Remove not updated symbols. updated_symbols: List[Symbol] = [x.Symbol for x in selected] not_updated: List[Symbol] = [x for x in self.data if x not in updated_symbols] for symbol in not_updated: del self.data[symbol] del self.accruals_data[symbol] return [x[0] for x in self.data.items()] def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Sort stocks by four factors respectively. sorted_by_accruals: List[Tuple[Symbol, float]] = sorted(self.data.items(), key=lambda x: x[1].Accruals, reverse=True) # high score with low accrual sorted_by_CFA: List[Tuple[Symbol, float]] = sorted(self.data.items(), key=lambda x: x[1].CFA) # high score with high CFA sorted_by_DA: List[Tuple[Symbol, float]] = sorted(self.data.items(), key=lambda x: x[1].DA, reverse=True) # high score with low leverage sorted_by_ROE: List[Tuple[Symbol, float]] = sorted(self.data.items(), key=lambda x: x[1].ROE) # high score with high ROE score = {} # Assign a score to each stock according to their rank with different factors. for i, obj in enumerate(sorted_by_accruals): score_accruals = i score_CFA = sorted_by_CFA.index(obj) score_DA = sorted_by_DA.index(obj) score_ROE = sorted_by_ROE.index(obj) score[obj[0]] = score_accruals + score_CFA + score_DA + score_ROE sorted_by_score: List[Tuple[Symbol, float]] = sorted(score.items(), key = lambda x: x[1], reverse = True) quantile: int = int(len(sorted_by_score) / self.quantile) long: List[Symbol] = [x[0] for x in sorted_by_score[:quantile]] short: List[Symbol] = [x[0] for x in sorted_by_score[-quantile:]] # Trade execution. # NOTE: Skip year 2007 due to data error. # if self.Time.year == 2007: # self.Liquidate() # return targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([long, short]): for symbol in portfolio: if slice.contains_key(symbol) and slice[symbol]: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) # Source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3188172 def CalculateAccruals(self, current_accrual_data, prev_accrual_data) -> float: delta_assets: float = current_accrual_data.CurrentAssets - prev_accrual_data.CurrentAssets delta_cash: float = current_accrual_data.CashAndCashEquivalents - prev_accrual_data.CashAndCashEquivalents delta_liabilities: float = current_accrual_data.CurrentLiabilities - prev_accrual_data.CurrentLiabilities delta_debt: float = current_accrual_data.CurrentDebt - prev_accrual_data.CurrentDebt dep: float = current_accrual_data.DepreciationAndAmortization total_assets_prev_year: float = prev_accrual_data.TotalAssets acc: float = (delta_assets - delta_liabilities - delta_cash + delta_debt - dep) / total_assets_prev_year return acc def Selection(self) -> None: if self.Time.month == self.rebalance_month: self.selection_flag = True @dataclass class AcrrualsData(): CurrentAssets: float CashAndCashEquivalents: float CurrentLiabilities: float CurrentDebt: float IncomeTaxPayable: float DepreciationAndAmortization: float TotalAssets: float Sales: float @dataclass class StockData(): Accruals: AcrrualsData CFA: float DA: float ROE: float def MultipleLinearRegression(x, y): x = np.array(x).T x = sm.add_constant(x) result = sm.OLS(endog=y, exog=x).fit() return result # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))