Overall Statistics |
Total Orders
39605
Average Win
0.35%
Average Loss
-0.25%
Compounding Annual Return
14.424%
Drawdown
52.700%
Expectancy
0.067
Start Equity
100000
End Equity
2786925.99
Net Profit
2686.926%
Sharpe Ratio
0.487
Sortino Ratio
0.59
Probabilistic Sharpe Ratio
0.395%
Loss Rate
55%
Win Rate
45%
Profit-Loss Ratio
1.38
Alpha
0.088
Beta
0.233
Annual Standard Deviation
0.201
Annual Variance
0.04
Information Ratio
0.24
Tracking Error
0.232
Treynor Ratio
0.419
Total Fees
$407386.62
Estimated Strategy Capacity
$26000000.00
Lowest Capacity Asset
AUD R735QTJ8XC9X
Portfolio Turnover
38.29%
|
# https://quantpedia.com/strategies/short-term-reversal-in-stocks/ # # The investment universe consists of the 100 biggest companies by market capitalization. # The investor goes long on the ten stocks with the lowest performance in the previous week and # goes short on the ten stocks with the greatest performance of the prior month. The portfolio is rebalanced weekly. # # QC implementation changes: #region imports from AlgorithmImports import * from pandas.core.frame import DataFrame from typing import List, Dict #endregion class ShortTermReversalEffectinStocks(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100000) market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.fundamental_count:int = 100 self.fundamental_sorting_key = lambda x: x.MarketCap self.period:int = 21 self.week_period:int = 5 self.stock_selection:int = 10 self.leverage:int = 5 self.min_share_price:float = 1. self.long:List[Symbol] = [] self.short:List[Symbol] = [] # daily close data self.data:Dict[Symbol, SymbolData] = {} self.day:int = 1 self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.Schedule.On(self.DateRules.EveryDay(market), self.TimeRules.AfterMarketOpen(market), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # update the rolling window every day for stock in fundamental: symbol:Symbol = stock.Symbol # store monthly price if symbol in self.data: self.data[symbol].update(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and \ x.Price >= self.min_share_price and x.MarketCap != 0] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] month_performances:Dict[Symbol, float] = {} week_performances:Dict[Symbol, float] = {} # warmup price rolling windows for stock in selected: symbol:Symbol = stock.Symbol if symbol not in self.data: self.data[symbol] = SymbolData(self.period+1) history:DataFrame = self.History(symbol, self.period+1, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet") continue closes:pd.Series = history.loc[symbol] for time, row in closes.iterrows(): self.data[symbol].update(row['close']) if self.data[symbol].is_ready(): month_performances[symbol] = self.data[symbol].performance(self.period) week_performances[symbol] = self.data[symbol].performance(self.week_period) if len(month_performances) > self.stock_selection * 2: sorted_by_week_perf:List[Symbol] = [x[0] for x in sorted(week_performances.items(), key=lambda item: item[1])] sorted_by_month_perf:List[Symbol] = [x[0] for x in sorted(month_performances.items(), key=lambda item: item[1], reverse=True)] self.long = sorted_by_week_perf[:self.stock_selection] self.short = sorted_by_month_perf[:self.stock_selection] return self.long + self.short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # order execution invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in self.long + self.short: self.Liquidate(symbol) for i, portfolio in enumerate([self.long, self.short]): for symbol in portfolio: if symbol in data and data[symbol]: self.SetHoldings(symbol, ((-1) ** i) / len(portfolio)) self.long.clear() self.short.clear() def Selection(self) -> None: if self.day == 5: self.selection_flag = True self.day += 1 if self.day > 5: self.day = 1 class SymbolData(): def __init__(self, period:float) -> None: self._daily_close = RollingWindow[float](period) def update(self, close:float) -> None: self._daily_close.Add(close) def is_ready(self) -> bool: return self._daily_close.IsReady def performance(self, period:int) -> float: return self._daily_close[0] / self._daily_close[period] - 1 # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))