Overall Statistics |
Total Orders
92
Average Win
4.63%
Average Loss
-3.26%
Compounding Annual Return
4.029%
Drawdown
26.600%
Expectancy
0.493
Start Equity
100000
End Equity
194559.53
Net Profit
94.560%
Sharpe Ratio
0.174
Sortino Ratio
0.099
Probabilistic Sharpe Ratio
0.078%
Loss Rate
38%
Win Rate
62%
Profit-Loss Ratio
1.42
Alpha
0.002
Beta
0.19
Annual Standard Deviation
0.087
Annual Variance
0.008
Information Ratio
-0.349
Tracking Error
0.156
Treynor Ratio
0.079
Total Fees
$813.55
Estimated Strategy Capacity
$57000000.00
Lowest Capacity Asset
XLK RGRPZX100F39
Portfolio Turnover
1.20%
|
# https://quantpedia.com/strategies/riding-industry-bubbles/ # # The investment universe consists of equity industry funds (or ETFs) which are proxy for equity industry indexes. Investor uses 10 years of # past data to calculate industry’s alpha based on CAPM model (from the regression model industry_return = alpha + beta*market return, it is # possible to use alternative models like the Fama/French 3 factor model). A bubble in an industry is detected if the industry’s alpha is # statistically significant (source academic paper uses 97,5% significance threshold, but it is possible to use other values). Investor is # long in each industry experiencing a bubble by applying 1/N rule (investment is divided equally between industries in bubble). If no bubble # is detected then he/she makes no investment. Data examination, alpha calculation and portfolio rebalancing is done on monthly basis. # # QC Implementation: import numpy as np from AlgorithmImports import * import statsmodels.api as sm class RidingIndustryBubbles(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.SetCash(100000) self.market = 'SPY' self.symbols = ['XLF', 'XLV', 'XLP', 'XLY', 'XLI', 'XLE', 'XLB', 'XLK', 'XLU'] self.period = 10 * 12 * 21 self.SetWarmUp(self.period) # Daily price data. self.data = {} for symbol in self.symbols + [self.market]: data = self.AddEquity(symbol, Resolution.Daily) self.data[symbol] = RollingWindow[float](self.period) # self.settings.daily_precise_end_time = False # self.settings.minimum_order_margin_portfolio_percentage = 0. self.selection_flag = False self.schedule.on(self.date_rules.month_start(self.market), self.time_rules.after_market_open(self.market), self.selection) def OnData(self, data): # Store daily price data. for symbol in self.symbols + [self.market]: symbol_obj = self.Symbol(symbol) if symbol_obj in data and data[symbol_obj]: self.data[symbol].Add(data[symbol_obj].Value) if not self.selection_flag: return self.selection_flag = False if not self.data[self.market].IsReady and self.market in data: return market_closes = [x for x in self.data[self.market]] separete_months = [market_closes[x:x+21] for x in range(0, len(market_closes),21)] market_monthly_returns = [] for month in separete_months: month_of_prices = [x for x in month] market_monthly_returns.append(month_of_prices[0] / month_of_prices[-1] - 1) # Prepared for regression. market_monthly_returns = np.array(market_monthly_returns).T market_monthly_returns = sm.add_constant(market_monthly_returns) t_stat = {} for symbol in self.symbols: if self.data[symbol].IsReady and symbol in data: closes = [x for x in self.data[symbol]] separete_months = [closes[x:x+21] for x in range(0, len(closes),21)] etf_monthly_returns = [] for month in separete_months: month_of_prices = [x for x in month] etf_monthly_returns.append(month_of_prices[0] / month_of_prices[-1] - 1) # alpha t-stat calc. model = sm.OLS(etf_monthly_returns, market_monthly_returns) results = model.fit() alpha_tstat = results.tvalues[0] alpha_pvalue = results.pvalues[0] t_stat[symbol] = (alpha_tstat, alpha_pvalue) long = [] if len(t_stat) != 0: long = [x[0] for x in t_stat.items() if x[1][0] >= 2 and x[1][1] >= 0.025] # The result is statistically significant, by the standards of the study, when p ≤ α # Trade execution. invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in long: self.Liquidate(symbol) for symbol in long: self.SetHoldings(symbol, 1 / len(long)) def selection(self) -> None: self.selection_flag = True