Overall Statistics |
Total Orders
15412
Average Win
0.13%
Average Loss
-0.24%
Compounding Annual Return
6.790%
Drawdown
33.800%
Expectancy
0.077
Start Equity
10000000
End Equity
50890097.41
Net Profit
408.901%
Sharpe Ratio
0.295
Sortino Ratio
0.348
Probabilistic Sharpe Ratio
0.146%
Loss Rate
31%
Win Rate
69%
Profit-Loss Ratio
0.55
Alpha
0.033
Beta
-0.088
Annual Standard Deviation
0.101
Annual Variance
0.01
Information Ratio
-0.066
Tracking Error
0.2
Treynor Ratio
-0.339
Total Fees
$1308732.16
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_S1.QuantpediaFutures 2S
Portfolio Turnover
8.16%
|
# https://quantpedia.com/strategies/time-series-momentum-effect/ # # The investment universe consists of 24 commodity futures, 12 cross-currency pairs (with 9 underlying currencies), 9 developed equity indices, and 13 developed # government bond futures. # Every month, the investor considers whether the excess return of each asset over the past 12 months is positive or negative and goes long on the contract if it is # positive and short if negative. The position size is set to be inversely proportional to the instrument’s volatility. A univariate GARCH model is used to estimated # ex-ante volatility in the source paper. However, other simple models could probably be easily used with good results (for example, the easiest one would be using # historical volatility instead of estimated volatility). The portfolio is rebalanced monthly. # # QC implementation changes: # - instead of GARCH model volatility, we have used simple historical volatility. from math import sqrt from AlgorithmImports import * import numpy as np import pandas as pd class TimeSeriesMomentum(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(10_000_000) self.symbols: List[str] = [ "CME_S1", # Soybean Futures, Continuous Contract "CME_W1", # Wheat Futures, Continuous Contract "CME_SM1", # Soybean Meal Futures, Continuous Contract "CME_BO1", # Soybean Oil Futures, Continuous Contract "CME_C1", # Corn Futures, Continuous Contract "CME_O1", # Oats Futures, Continuous Contract "CME_LC1", # Live Cattle Futures, Continuous Contract "CME_FC1", # Feeder Cattle Futures, Continuous Contract "CME_LN1", # Lean Hog Futures, Continuous Contract "CME_GC1", # Gold Futures, Continuous Contract "CME_SI1", # Silver Futures, Continuous Contract "CME_PL1", # Platinum Futures, Continuous Contract "CME_CL1", # Crude Oil Futures, Continuous Contract "CME_HG1", # Copper Futures, Continuous Contract "CME_LB1", # Random Length Lumber Futures, Continuous Contract "CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract "CME_PA1", # Palladium Futures, Continuous Contract "CME_RR1", # Rough Rice Futures, Continuous Contract "CME_DA1", # Class III Milk Futures "CME_RB1", # Gasoline Futures, Continuous Contract "CME_KW1", # Wheat Kansas, Continuous Contract "ICE_CC1", # Cocoa Futures, Continuous Contract "ICE_CT1", # Cotton No. 2 Futures, Continuous Contract "ICE_KC1", # Coffee C Futures, Continuous Contract "ICE_O1", # Heating Oil Futures, Continuous Contract "ICE_OJ1", # Orange Juice Futures, Continuous Contract "ICE_SB1", # Sugar No. 11 Futures, Continuous Contract "ICE_RS1", # Canola Futures, Continuous Contract "ICE_GO1", # Gas Oil Futures, Continuous Contract "ICE_WT1", # WTI Crude Futures, Continuous Contract "CME_AD1", # Australian Dollar Futures, Continuous Contract #1 "CME_BP1", # British Pound Futures, Continuous Contract #1 "CME_CD1", # Canadian Dollar Futures, Continuous Contract #1 "CME_EC1", # Euro FX Futures, Continuous Contract #1 "CME_JY1", # Japanese Yen Futures, Continuous Contract #1 "CME_MP1", # Mexican Peso Futures, Continuous Contract #1 "CME_NE1", # New Zealand Dollar Futures, Continuous Contract #1 "CME_SF1", # Swiss Franc Futures, Continuous Contract #1 "ICE_DX1", # US Dollar Index Futures, Continuous Contract #1 "CME_NQ1", # E-mini NASDAQ 100 Futures, Continuous Contract #1 "EUREX_FDAX1", # DAX Futures, Continuous Contract #1 "CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1 "EUREX_FSMI1", # SMI Futures, Continuous Contract #1 "EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1 "LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1 "LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1 "SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1 "CME_MD1", # E-mini S&P MidCap 400 Futures "CME_TY1", # 10 Yr Note Futures, Continuous Contract #1 "CME_FV1", # 5 Yr Note Futures, Continuous Contract #1 "CME_TU1", # 2 Yr Note Futures, Continuous Contract #1 "ASX_XT1", # 10 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl. "ASX_YT1", # 3 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl. "EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1 "EUREX_FBTP1", # Long-Term Euro-BTP Futures, Continuous Contract #1 "EUREX_FGBM1", # Euro-Bobl Futures, Continuous Contract #1 "EUREX_FGBS1", # Euro-Schatz Futures, Continuous Contract #1 "SGX_JB1", # SGX 10-Year Mini Japanese Government Bond Futures "LIFFE_R1" # Long Gilt Futures, Continuous Contract #1 "MX_CGB1", # Ten-Year Government of Canada Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl. ] self.period: int = 12 * 21 self.SetWarmUp(self.period, Resolution.Daily) self.targeted_volatility: float = .1 self.vol_target_period: int = 60 self.leverage_cap: int = 4 leverage: int = 20 # Daily rolled data. self.data: Dict[str, RollingWindow] = {} for symbol in self.symbols: # Back adjusted and spliced data import. data: Security = self.AddData(QuantpediaFutures, symbol, Resolution.Daily) data.SetFeeModel(CustomFeeModel()) data.SetLeverage(leverage) self.data[symbol] = RollingWindow[float](self.period) self.recent_month: int = -1 self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.settings.daily_precise_end_time = False def OnData(self, slice: Slice) -> None: custom_data_last_update_date: Dict[str, datetime.date] = QuantpediaFutures.get_last_update_date() # Store daily data. for symbol in self.symbols: if slice.contains_key(symbol) and slice[symbol]: price = slice[symbol].Value self.data[symbol].Add(price) if self.recent_month == self.Time.month: return self.recent_month = self.Time.month # Performance and volatility data. performance_volatility: Dict[str, Tuple[float, float]] = {} daily_returns: Dict[str, float] = {} for symbol in self.symbols: if self.data[symbol].IsReady: # check if data is still coming if self.Securities[symbol].GetLastData() and self.time.date() > custom_data_last_update_date[symbol]: self.liquidate(symbol) continue back_adjusted_prices: np.ndarray = np.array([x for x in self.data[symbol]]) performance: float = back_adjusted_prices[0] / back_adjusted_prices[-1] - 1 daily_rets: np.ndarray = back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1 back_adjusted_prices: np.ndarray = back_adjusted_prices[:self.vol_target_period] daily_rets: np.ndarray = back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1 volatility_3M: float = np.std(daily_rets) * sqrt(252) daily_returns[symbol] = daily_rets[::-1][:self.vol_target_period] performance_volatility[symbol] = (performance, volatility_3M) if len(performance_volatility) == 0: return # Performance sorting. long: List[str] = [x[0] for x in performance_volatility.items() if x[1][0] > 0] short: List[str] = [x[0] for x in performance_volatility.items() if x[1][0] < 0] weight_by_symbol: Dict[str, float] = {} # Volatility weighting long and short leg separately. ls_leverage: List[float] = [] # long and short leverage for sym_i, symbols in enumerate([long, short]): total_volatility: float = sum([1/performance_volatility[x][1] for x in symbols]) # Inverse volatility weighting. weights: np.ndarray = np.array([(1/performance_volatility[x][1]) / total_volatility for x in symbols]) weights_sum: float = sum(weights) weights: float = weights/weights_sum df: DataFrame = pd.DataFrame() i: int = 0 for symbol in symbols: df[str(symbol)] = [x for x in daily_returns[symbol]] weight_by_symbol[symbol] = weights[i] if sym_i == 0 else -weights[i] i += 1 # volatility targeting portfolio_vol: float = np.sqrt(np.dot(weights.T, np.dot(df.cov() * 252, weights.T))) leverage: float = self.targeted_volatility / portfolio_vol leverage: float = min(self.leverage_cap, leverage) # cap max leverage ls_leverage.append(leverage) # Trade execution. invested: List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in long + short: self.Liquidate(symbol) for symbol, w in weight_by_symbol.items(): if slice.contains_key(symbol) and slice[symbol]: if w >= 0: self.SetHoldings(symbol, w*ls_leverage[0]) # self.SetHoldings(symbol, w) else: self.SetHoldings(symbol, w*ls_leverage[1]) # self.SetHoldings(symbol, w) # Quantpedia data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaFutures(PythonData): _last_update_date: Dict[Symbol, datetime.date] = {} @staticmethod def get_last_update_date() -> Dict[Symbol, datetime.date]: return QuantpediaFutures._last_update_date def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config, line, date, isLiveMode): data = QuantpediaFutures() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1) data['back_adjusted'] = float(split[1]) data['spliced'] = float(split[2]) data.Value = float(split[1]) if config.Symbol.Value not in QuantpediaFutures._last_update_date: QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date() if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]: QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date() return data # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))