Overall Statistics |
Total Orders
42279
Average Win
0.07%
Average Loss
-0.04%
Compounding Annual Return
12.983%
Drawdown
55.100%
Expectancy
0.387
Start Equity
100000
End Equity
2099683.00
Net Profit
1999.683%
Sharpe Ratio
0.549
Sortino Ratio
0.596
Probabilistic Sharpe Ratio
3.074%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.59
Alpha
0.085
Beta
-0.205
Annual Standard Deviation
0.139
Annual Variance
0.019
Information Ratio
0.138
Tracking Error
0.234
Treynor Ratio
-0.373
Total Fees
$2399.16
Estimated Strategy Capacity
$0
Lowest Capacity Asset
ARP T5XDKYYF3DYD
Portfolio Turnover
0.53%
|
# https://quantpedia.com/strategies/value-book-to-market-factor/ # # The investment universe contains all NYSE, AMEX, and NASDAQ stocks. To represent “value” investing, HML portfolio goes long high book-to-price stocks and short, # low book-to-price stocks. In this strategy, we show the results for regular HML which is simply the average of the portfolio returns of HML small (which goes long # cheap and short expensive only among small stocks) and HML large (which goes long cheap and short expensive only among large caps). The portfolio is equal-weighted # and rebalanced monthly. # # QC implementation changes: # - Quintile selection is done. from AlgorithmImports import * import numpy as np from typing import List class ValueBooktoMarketFactor(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.UniverseSettings.Leverage = 5 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0 self.settings.daily_precise_end_time = False self.long_symbols: List[Symbol] = [] self.short_symbols: List[Symbol] = [] # Fundamental Filter Parameters self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE'] self.quantile: int = 5 self.rebalancing_month: int = 12 self.selection_flag: bool = True self.exchange: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.Schedule.On(self.DateRules.MonthEnd(self.exchange), self.TimeRules.AfterMarketOpen(self.exchange), self.Selection) def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged selected: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData and f.SecurityReference.ExchangeId in self.exchange_codes and not np.isnan(f.ValuationRatios.PBRatio) and f.ValuationRatios.PBRatio != 0] if len(selected) >= self.quantile: sorted_by_pb: List[Fundamental] = sorted(selected, key = lambda x:(x.ValuationRatios.PBRatio), reverse=False) quantile: int = int(len(sorted_by_pb) / self.quantile) self.long_symbols = [i.Symbol for i in sorted_by_pb[:quantile]] self.short_symbols = [i.Symbol for i in sorted_by_pb[-quantile:]] return self.long_symbols + self.short_symbols def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution - Leveraged portfolio - 100% long, 100% short targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long_symbols, self.short_symbols]): for symbol in portfolio: if slice.ContainsKey(symbol) and slice[symbol] is not None: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long_symbols.clear() self.short_symbols.clear() def Selection(self) -> None: if self.Time.month == self.rebalancing_month: self.selection_flag = True def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))