Overall Statistics |
Total Orders
14675
Average Win
0.28%
Average Loss
-0.25%
Compounding Annual Return
17.098%
Drawdown
61.400%
Expectancy
0.202
Start Equity
100000
End Equity
5055694.41
Net Profit
4955.694%
Sharpe Ratio
0.577
Sortino Ratio
0.581
Probabilistic Sharpe Ratio
1.686%
Loss Rate
43%
Win Rate
57%
Profit-Loss Ratio
1.11
Alpha
0.089
Beta
0.638
Annual Standard Deviation
0.201
Annual Variance
0.04
Information Ratio
0.4
Tracking Error
0.183
Treynor Ratio
0.182
Total Fees
$19336.79
Estimated Strategy Capacity
$29000000.00
Lowest Capacity Asset
PPC UIUWC8DDZ42T
Portfolio Turnover
2.68%
|
# https://quantpedia.com/strategies/betting-against-beta-factor-in-stocks/ # # The investment universe consists of all stocks from the CRSP database. The beta for each stock is calculated with respect to the MSCI US Equity Index using a 1-year # rolling window. Stocks are then ranked in ascending order on the basis of their estimated beta. The ranked stocks are assigned to one of two portfolios: low beta and # high beta. Securities are weighted by the ranked betas, and portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio # formation. The “Betting-Against-Beta” is the zero-cost zero-beta portfolio that is long on the low-beta portfolio and short on the high-beta portfolio. There are a lot of # simple modifications (like going long on the bottom beta decile and short on the top beta decile), which could probably improve the strategy’s performance. # # QC implementation changes: # - The investment universe consists of 1000 most liquid US stocks with price >= 5$. from scipy import stats from AlgorithmImports import * import numpy as np from pandas.core.frame import DataFrame from typing import List, Dict class BettingAgainstBetaFactorinStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) # daily price data self.data:Dict[Symbol, RollingWindow] = {} self.period:int = 12 * 21 self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.data[self.symbol] = RollingWindow[float](self.period) self.long:List[Symbol] = [] self.short:List[Symbol] = [] self.long_lvg:float = 1. # leverage for long portfolio calculated from average beta self.short_lvg:float = 1. # leverage for short portfolio calculated from average beta self.leverage_cap:float = 2. self.coarse_count:int = 1000 self.quantile:int = 10 self.min_share_price:float = 5. self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage_cap*3) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # update the rolling window every day for stock in fundamental: symbol:Symbol = stock.Symbol if symbol in self.data: # Store daily price. self.data[symbol].Add(stock.AdjustedPrice) # selection once a month if not self.selection_flag: return Universe.Unchanged selected:List[Symbol] = [x.Symbol for x in sorted([x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.Price >= self.min_share_price and x.MarketCap != 0], key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]] rebalance:bool = False if self.data[self.symbol].IsReady: rebalance = True beta:Dict[Symbol, float] = {} for symbol in selected: # warmup price rolling windows if symbol not in self.data: self.data[symbol] = RollingWindow[float](self.period) history:DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet") continue closes:pd.Series = history.loc[symbol].close for time, close in closes.items(): self.data[symbol].Add(close) if rebalance: if self.data[symbol].IsReady: market_closes:np.ndarray = np.array([x for x in self.data[self.symbol]]) stock_closes:np.ndarray = np.array([x for x in self.data[symbol]]) market_returns:np.ndarray = (market_closes[:-1] - market_closes[1:]) / market_closes[1:] stock_returns:np.ndarray = (stock_closes[:-1] - stock_closes[1:]) / stock_closes[1:] cov:float = np.cov(stock_returns[::-1], market_returns[::-1])[0][1] market_variance:float = np.var(market_returns) beta[symbol] = cov / market_variance if len(beta) >= self.quantile: # sort by beta sorted_by_beta:List = sorted(beta.items(), key = lambda x: x[1], reverse=True) quantile:int = int(len(sorted_by_beta) / self.quantile) self.long = [x for x in sorted_by_beta[-quantile:]] self.short = [x for x in sorted_by_beta[:quantile]] # create zero-beta portfolio long_mean_beta:float = np.mean([x[1] for x in self.long]) short_mean_beta:float = np.mean([x[1] for x in self.short]) self.long = [x[0] for x in self.long] self.short = [x[0] for x in self.short] # cap leverage self.long_lvg = min(self.leverage_cap, abs(1. / long_mean_beta)) self.short_lvg = min(self.leverage_cap, abs(1. / short_mean_beta)) return self.long + self.short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # trade execution stocks_invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in stocks_invested: if symbol not in self.long + self.short: self.Liquidate(symbol) long_len:int = len(self.long) short_len:int = len(self.short) for symbol in self.long: if symbol in data and data[symbol]: self.SetHoldings(symbol, (1 / long_len) * self.long_lvg) for symbol in self.short: if symbol in data and data[symbol]: self.SetHoldings(symbol, -(1 / short_len) * self.short_lvg) self.long.clear() self.short.clear() self.long_lvg = 1 self.short_lvg = 1 def Selection(self) -> None: self.selection_flag = True # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))