Overall Statistics |
Total Orders
28349
Average Win
0.10%
Average Loss
-0.08%
Compounding Annual Return
6.627%
Drawdown
19.400%
Expectancy
0.125
Start Equity
100000
End Equity
495395.92
Net Profit
395.396%
Sharpe Ratio
0.31
Sortino Ratio
0.332
Probabilistic Sharpe Ratio
0.355%
Loss Rate
49%
Win Rate
51%
Profit-Loss Ratio
1.19
Alpha
0.026
Beta
0.03
Annual Standard Deviation
0.087
Annual Variance
0.008
Information Ratio
-0.096
Tracking Error
0.177
Treynor Ratio
0.906
Total Fees
$946.82
Estimated Strategy Capacity
$36000.00
Lowest Capacity Asset
VALU R735QTJ8XC9X
Portfolio Turnover
0.72%
|
# https://quantpedia.com/strategies/investment-factor/ # # The investment universe consists of all NYSE, Amex, and NASDAQ stocks. Firstly, stocks are allocated to five Size groups (Small to Big) at the end of each June # using NYSE market cap breakpoints. Stocks are allocated independently to five Investment (Inv) groups (Low to High) still using NYSE breakpoints. # The intersections of the two sorts produce 25 Size-Inv portfolios. For portfolios formed in June of year t, Inv is the growth of total assets for # the fiscal year ending in t-1 divided by total assets at the end of t-1. Long portfolio with the highest Size and simultaneously with the lowest # Investment. Short portfolio with the highest Size and simultaneously with the highest Investment. The portfolios are value-weighted. # # QC implementation changes: # - The investment universe consists of 3000 largest US stock traded on NYSE, AMEX and NASDAQ with price >= 1$. # - The portfolios are equally-weighted. from AlgorithmImports import * class InvestmentFactor(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.fundamental_count: int = 3_000 self.fundamental_sorting_key = lambda x: x.MarketCap self.long: List[Symbol] = [] self.short: List[Symbol] = [] self.quantile: int = 5 self.leverage: int = 3 self.rebalance_month: int = 6 self.min_share_price: float = 1. self.weight: Dict[Symbol, float] = {} self.selection_flag: bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0 self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged selected: List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and x.Price >= self.min_share_price and \ ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE")) and \ not np.isnan(x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths) and not np.isnan(x.OperationRatios.TotalAssetsGrowth.OneYear) and \ x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths != 0 and x.OperationRatios.TotalAssetsGrowth.OneYear != 0 ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # Sorting by investment factor. sorted_by_inv_factor: List[Fundamental] = sorted(selected, key = lambda x: (x.OperationRatios.TotalAssetsGrowth.OneYear / x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths), reverse=True) if len(sorted_by_inv_factor) >= self.quantile: quantile: int = int(len(sorted_by_inv_factor) / self.quantile) self.long = [x.Symbol for x in sorted_by_inv_factor[-quantile:]] self.short = [x.Symbol for x in sorted_by_inv_factor[:quantile]] return self.long + self.short def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # order execution targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long, self.short]): for symbol in portfolio: if symbol in slice and slice[symbol]: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long.clear() self.short.clear() def Selection(self) -> None: if self.Time.month == self.rebalance_month: self.selection_flag = True # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))