Overall Statistics |
Total Orders
9613
Average Win
0.39%
Average Loss
-0.36%
Compounding Annual Return
4.623%
Drawdown
15.800%
Expectancy
0.042
Start Equity
100000
End Equity
194197.98
Net Profit
94.198%
Sharpe Ratio
0.272
Sortino Ratio
0.336
Probabilistic Sharpe Ratio
1.195%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.10
Alpha
0.013
Beta
0.051
Annual Standard Deviation
0.064
Annual Variance
0.004
Information Ratio
-0.463
Tracking Error
0.15
Treynor Ratio
0.347
Total Fees
$12793.59
Estimated Strategy Capacity
$4600000.00
Lowest Capacity Asset
DGX R735QTJ8XC9X
Portfolio Turnover
35.87%
|
# https://quantpedia.com/strategies/pairs-trading-with-stocks/ # # The investment universe consists of stocks from NYSE, AMEX, and NASDAQ, while illiquid stocks are removed from the investment universe. Cumulative # total return index is then created for each stock (dividends included), and the starting price during the formation period is set to $1 (price normalization). # Pairs are formed over twelve months (formation period) and are then traded in the next six-month period (trading period). The matching partner for each stock # is found by looking for the security that minimizes the sum of squared deviations between two normalized price series. Top 20 pairs with the smallest historical # distance measure are then traded, and a long-short position is opened when pair prices have diverged by two standard deviations, and the position is closed # when prices revert. # # QC implementation changes: # - Universe consists of top 500 most liquid US stocks with price > 5$. # - Maximum number of pairs traded at one time is set to 5. #region imports from AlgorithmImports import * import numpy as np import itertools as it from pandas.core.frame import DataFrame #endregion class PairsTradingwithStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetCash(100_000) self.market: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol # Daily price data. self.history_price: Dict[Symbol, RollingWindow] = {} self.period: int = 12 * 21 self.leverage: int = 5 self.min_share_price: float = 5. self.selection_month: int = 6 # Equally weighted brackets. self.max_traded_pairs: int = 5 self.traded_pairs:List = [] self.traded_quantity: Dict = {} self.sorted_pairs: List = [] self.fundamental_count: int = 500 self.fundamental_sorting_key = lambda x: x.DollarVolume self.month: int = 6 self.selection_flag: bool = True self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.Schedule.On(self.DateRules.MonthStart(self.market), self.TimeRules.AfterMarketOpen(self.market), self.Selection) def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) for security in changes.RemovedSecurities: symbol: Symbol = security.Symbol if symbol in self.history_price: del self.history_price[symbol] symbols: List[Symbol] = [x for x in self.history_price.keys() if x != self.market] self.symbol_pairs = list(it.combinations(symbols, 2)) # minimize the sum of squared deviations distances: Dict = {} for pair in self.symbol_pairs: if self.history_price[pair[0]].IsReady and self.history_price[pair[1]].IsReady: distances[pair] = self.Distance(self.history_price[pair[0]], self.history_price[pair[1]]) if len(distances) != 0: self.sorted_pairs = [x[0] for x in sorted(distances.items(), key = lambda x: x[1])[:20]] self.Liquidate() self.traded_pairs.clear() self.traded_quantity.clear() def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # Update the rolling window every day. for stock in fundamental: symbol: Symbol = stock.Symbol if symbol in self.history_price: self.history_price[symbol].Add(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged self.selection_flag = False selected: List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Price > self.min_share_price and x.Market == 'usa' ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # Warmup price rolling windows. for stock in selected: symbol: Symbol = stock.Symbol if symbol in self.history_price: continue self.history_price[symbol] = RollingWindow[float](self.period) history: DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet") continue closes: Series = history.loc[symbol].close for time, close in closes.items(): self.history_price[symbol].Add(close) return [x.Symbol for x in selected if self.history_price[x.Symbol].IsReady] def OnData(self, data: Slice) -> None: if self.sorted_pairs is None: return pairs_to_remove:List = [] for pair in self.sorted_pairs: # Calculate the spread of two price series. price_a: List[float] = list(self.history_price[pair[0]]) price_b: List[float] = list(self.history_price[pair[1]]) norm_a: np.ndarray = np.array(price_a) / price_a[-1] norm_b: np.ndarray = np.array(price_b) / price_b[-1] spread: np.ndarray = norm_a - norm_b mean: float = np.mean(spread) std: float = np.std(spread) actual_spread: float = spread[0] # Long-short position is opened when pair prices have diverged by two standard deviations. traded_portfolio_value: float = self.Portfolio.TotalPortfolioValue / self.max_traded_pairs if actual_spread > mean + 2*std or actual_spread < mean - 2*std: if pair not in self.traded_pairs: # open new position for pair, if there's place for it. if len(self.traded_pairs) < self.max_traded_pairs: symbol_a: Symbol = pair[0] symbol_b: Symbol = pair[1] a_price_norm: float = norm_a[0] b_price_norm: float = norm_b[0] a_price: float = price_a[0] b_price: float = price_b[0] # a stock's price > b stock's price if a_price_norm > b_price_norm: if b_price != 0 and a_price != 0: long_q: float = traded_portfolio_value / b_price # long b stock short_q: float = -traded_portfolio_value / a_price # short a stock if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \ self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \ self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable: self.MarketOrder(symbol_a, short_q) self.MarketOrder(symbol_b, long_q) self.traded_quantity[pair] = (short_q, long_q) self.traded_pairs.append(pair) # b stock's price > a stock's price else: if b_price != 0 and a_price != 0: long_q: float = traded_portfolio_value / a_price short_q: float = -traded_portfolio_value / b_price if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \ self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \ self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable: self.MarketOrder(symbol_a, long_q) self.MarketOrder(symbol_b, short_q) self.traded_quantity[pair] = (long_q, short_q) self.traded_pairs.append(pair) # The position is closed when prices revert back. else: if pair in self.traded_pairs and pair in self.traded_quantity: # make opposite order to opened position self.MarketOrder(pair[0], -self.traded_quantity[pair][0]) self.MarketOrder(pair[1], -self.traded_quantity[pair][1]) pairs_to_remove.append(pair) for pair in pairs_to_remove: self.traded_pairs.remove(pair) del self.traded_quantity[pair] def Distance(self, price_a, price_b) -> float: # Calculate the sum of squared deviations between two normalized price series. price_a: List = list(price_a) price_b: List = list(price_b) norm_a: np.ndarray = np.array(price_a) / price_a[-1] norm_b: np.ndarray = np.array(price_b) / price_b[-1] return sum((norm_a - norm_b)**2) def Selection(self) -> None: if self.month == self.selection_month: self.selection_flag = True self.month += 1 if self.month > 12: self.month = 1 # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))