Overall Statistics |
Total Orders
24043
Average Win
0.14%
Average Loss
-0.12%
Compounding Annual Return
9.344%
Drawdown
36.900%
Expectancy
0.075
Start Equity
100000
End Equity
379553.75
Net Profit
279.554%
Sharpe Ratio
0.34
Sortino Ratio
0.36
Probabilistic Sharpe Ratio
0.318%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.17
Alpha
0.061
Beta
0.087
Annual Standard Deviation
0.203
Annual Variance
0.041
Information Ratio
-0.084
Tracking Error
0.24
Treynor Ratio
0.794
Total Fees
$989.14
Estimated Strategy Capacity
$1300000000.00
Lowest Capacity Asset
CTMX W4JI5EUDC9K5
Portfolio Turnover
2.29%
|
# https://quantpedia.com/strategies/momentum-and-reversal-combined-with-volatility-effect-in-stocks/ # # The investment universe consists of NYSE, AMEX, and NASDAQ stocks with prices higher than $5 per share. At the beginning of each month, # the sample is divided into equal halves, at the size median, and only larger stocks are used. Then each month, realized returns and realized # (annualized) volatilities are calculated for each stock for the past six months. One week (seven calendar days) prior to the beginning of # each month is skipped to avoid biases due to microstructures. Stocks are then sorted into quintiles based on their realized past returns # and past volatility. The investor goes long on stocks from the highest performing quintile from the highest volatility group and short on # stocks from the lowest-performing quintile from the highest volatility group. Stocks are equally weighted and held for six months # (therefore, 1/6 of the portfolio is rebalanced every month). # # QC implementation changes: # - The investment universe consists of 500 most liquid stocks with prices higher than $5 per share traded on NYSE, AMEX, and NASDAQ. import numpy as np from AlgorithmImports import * class MomentumReversalCombinedWithVolatilityEffectinStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetCash(100000) market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol # EW Tranching. self.holding_period:int = 6 self.managed_queue:List[RebalanceQueueItem] = [] # Daily price data. self.data:Dict[Symbol, SymbolData] = {} self.period:int = 6 * 21 self.leverage:int = 5 self.min_share_price:float = 5. self.exchange_codes:List[str] = ['NYS', 'NAS', 'ASE'] self.quantile:int = 5 self.fundamental_count:int = 500 self.fundamental_sorting_key = lambda x: x.DollarVolume self.selection_flag = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.Schedule.On(self.DateRules.MonthStart(market), self.TimeRules.AfterMarketOpen(market), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> None: # Update the rolling window every day. for stock in fundamental: symbol = stock.Symbol # Store monthly price. if symbol in self.data: self.data[symbol].update(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged selected:List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.Price > self.min_share_price and \ x.SecurityReference.ExchangeId in self.exchange_codes and x.MarketCap != 0 ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] sorted_by_market_cap:List[Fundamental] = sorted(selected, key = lambda x: x.MarketCap, reverse=True) half:int = int(len(sorted_by_market_cap) / 2) top_by_market_cap:List[Symbol] = [x.Symbol for x in sorted_by_market_cap][:half] perf_volatility:Dict[Symbol, Tuple[float, float]] = {} # Warmup price rolling windows. for stock in selected: symbol = stock.Symbol if symbol not in self.data: self.data[symbol] = SymbolData(symbol, self.period) history = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet.") continue closes = history.loc[symbol].close for time, close in closes.items(): self.data[symbol].update(close) # Performance and volatility tuple. if self.data[symbol].is_ready(): performance = self.data[symbol].performance() annualized_volatility = self.data[symbol].volatility() perf_volatility[symbol] = (performance, annualized_volatility) long:List[Symbol] = [] short:List[Symbol] = [] if len(perf_volatility) >= self.quantile: sorted_by_perf:List[Tuple] = sorted(perf_volatility.items(), key = lambda x: x[1][0], reverse = True) quantile:int = int(len(sorted_by_perf) / self.quantile) top_by_perf:List[Symbol] = [x[0] for x in sorted_by_perf[:quantile]] low_by_perf:List[Symbol] = [x[0] for x in sorted_by_perf[-quantile:]] sorted_by_vol:List[Tuple] = sorted(perf_volatility.items(), key = lambda x: x[1][1], reverse = True) quantile = int(len(sorted_by_vol) / self.quantile) top_by_vol:List[Symbol] = [x[0] for x in sorted_by_vol[:quantile]] low_by_vol:List[Symbol] = [x[0] for x in sorted_by_vol[-quantile:]] long = [x for x in top_by_perf if x in top_by_vol] short = [x for x in low_by_perf if x in top_by_vol] if len(long) != 0: long_w:float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(long) # symbol/quantity collection long_symbol_q:List = [(x, np.ceil(long_w / self.data[x].get_last_price())) for x in long] else: long_symbol_q:List = [] if len(short) != 0: short_w:float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(short) # symbol/quantity collection short_symbol_q:List = [(x, -np.ceil(short_w / self.data[x].get_last_price())) for x in short] else: short_symbol_q:List = [] self.managed_queue.append(RebalanceQueueItem(long_symbol_q + short_symbol_q)) return long + short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False remove_item = None # Rebalance portfolio for item in self.managed_queue: if item.holding_period == self.holding_period: for symbol, quantity in item.symbol_q: self.MarketOrder(symbol, -quantity) remove_item = item # Trade execution if item.holding_period == 0: open_symbol_q = [] for symbol, quantity in item.symbol_q: if symbol in data and data[symbol] and self.Securities[symbol].IsTradable: self.MarketOrder(symbol, quantity) open_symbol_q.append((symbol, quantity)) # Only opened orders will be closed item.symbol_q = open_symbol_q item.holding_period += 1 # We need to remove closed part of portfolio after loop. Otherwise it will miss one item in self.managed_queue. if remove_item: self.managed_queue.remove(remove_item) def Selection(self) -> None: self.selection_flag = True class RebalanceQueueItem(): def __init__(self, symbol_q:List): # symbol/quantity collections self.symbol_q:List = symbol_q self.holding_period:int = 0 class SymbolData(): def __init__(self, symbol: Symbol, period: int): self._symbol:Symbol = symbol self._price:RollingWindow = RollingWindow[float](period) self._last_price:float = 0 def update(self, price: float) -> None: self._price.Add(price) self._last_price:float = price def get_last_price(self) -> float: return self._last_price def is_ready(self) -> bool: return self._price.IsReady def volatility(self) -> float: closes:np.ndarray = np.array(list(self._price)[5:]) # Skip last week. daily_returns:np.ndarray = closes[:-1] / closes[1:] - 1 return np.std(daily_returns) * np.sqrt(252 / (len(closes))) def performance(self) -> float: closes:List[float] = list(self._price)[5:] # Skip last week. return (closes[0] / closes[-1] - 1) # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))