Overall Statistics |
Total Orders
90482
Average Win
0.04%
Average Loss
-0.04%
Compounding Annual Return
1.592%
Drawdown
47.000%
Expectancy
0.021
Start Equity
100000
End Equity
148276.31
Net Profit
48.276%
Sharpe Ratio
-0.081
Sortino Ratio
-0.09
Probabilistic Sharpe Ratio
0.000%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.02
Alpha
0
Beta
-0.175
Annual Standard Deviation
0.089
Annual Variance
0.008
Information Ratio
-0.25
Tracking Error
0.205
Treynor Ratio
0.041
Total Fees
$2103.61
Estimated Strategy Capacity
$34000000.00
Lowest Capacity Asset
CWH WEIWBJCZ9N51
Portfolio Turnover
3.01%
|
# https://quantpedia.com/strategies/roa-effect-within-stocks/ # # The investment universe contains all stocks on NYSE and AMEX and Nasdaq with Sales greater than 10 million USD. Stocks are then sorted into # two halves based on market capitalization. Each half is then divided into deciles based on Return on assets (ROA) calculated as quarterly # earnings (Compustat quarterly item IBQ – income before extraordinary items) divided by one-quarter-lagged assets (item ATQ – total assets). # The investor then goes long the top three deciles from each market capitalization group and goes short bottom three deciles. The strategy is # rebalanced monthly, and stocks are equally weighted. # # QC implementation changes: # - The investment universe contains 1000 most liquid stocks on NYSE and AMEX and Nasdaq with Sales greater than 10 million USD. from AlgorithmImports import * class ROAEffectWithinStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.quantile:int = 10 self.leverage:int = 5 self.sales_threshold:float = 1e7 self.exchange_codes:List[str] = ['NYS', 'NAS', 'ASE'] self.long:List[Symbol] = [] self.short:List[Symbol] = [] self.fundamental_count:int = 500 self.fundamental_sorting_key = lambda x: x.DollarVolume self.settings.daily_precise_end_time = False self.settings.minimum_order_margin_portfolio_percentage = 0. self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Schedule.On(self.DateRules.MonthEnd(market), self.TimeRules.AfterMarketOpen(market), self.Selection) def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.SecurityReference.ExchangeId in self.exchange_codes and \ x.ValuationRatios.SalesPerShare * x.EarningReports.DilutedAverageShares.Value > self.sales_threshold and \ not np.isnan(x.OperationRatios.ROA.ThreeMonths) and x.OperationRatios.ROA.ThreeMonths != 0] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # Sorting by market cap. sorted_by_market_cap = sorted(selected, key = lambda x: x.MarketCap, reverse=True) half:int = int(len(sorted_by_market_cap) / 2) top_mc = [x for x in sorted_by_market_cap[:half]] bottom_mc = [x for x in sorted_by_market_cap[half:]] if len(top_mc) >= self.quantile and len(bottom_mc) >= self.quantile: # Sorting by ROA. sorted_top_by_roa:List[Fundamental] = sorted(top_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True) quantile:int = int(len(sorted_top_by_roa) / self.quantile) long_top:List[Symbol] = [x.Symbol for x in sorted_top_by_roa[:quantile*3]] short_top:List[Symbol] = [x.Symbol for x in sorted_top_by_roa[-(quantile*3):]] sorted_bottom_by_roa:List[Fundamental] = sorted(bottom_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True) quantile = int(len(sorted_bottom_by_roa) / self.quantile) long_bottom:List[Symbol] = [x.Symbol for x in sorted_bottom_by_roa[:quantile*3]] short_bottom:List[Symbol] = [x.Symbol for x in sorted_bottom_by_roa[-(quantile*3):]] self.long = long_top + long_bottom self.short = short_top + short_bottom return self.long + self.short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # order execution targets:List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long, self.short]): for symbol in portfolio: if symbol in data and data[symbol]: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long.clear() self.short.clear() def Selection(self) -> None: self.selection_flag = True # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))