Overall Statistics |
Total Orders
1488
Average Win
1.79%
Average Loss
-2.21%
Compounding Annual Return
-2.936%
Drawdown
77.800%
Expectancy
-0.006
Start Equity
100000
End Equity
62357.49
Net Profit
-37.643%
Sharpe Ratio
-0.054
Sortino Ratio
-0.062
Probabilistic Sharpe Ratio
0.000%
Loss Rate
45%
Win Rate
55%
Profit-Loss Ratio
0.81
Alpha
-0.012
Beta
0.003
Annual Standard Deviation
0.222
Annual Variance
0.049
Information Ratio
-0.397
Tracking Error
0.267
Treynor Ratio
-3.609
Total Fees
$1730.66
Estimated Strategy Capacity
$0
Lowest Capacity Asset
ICE_WT1.QuantpediaFutures 2S
Portfolio Turnover
5.92%
|
# https://quantpedia.com/strategies/term-structure-effect-in-commodities/ # # This simple strategy buys each month the 20% of commodities with the highest roll-returns and shorts the 20% of commodities with the lowest # roll-returns and holds the long-short positions for one month. The contracts in each quintile are equally-weighted. # The investment universe is all commodity futures contracts. # # QC implementation changes: #region imports import numpy as np from AlgorithmImports import * import data_tools #endregion class TermStructureEffectinCommodities(QCAlgorithm): def Initialize(self): self.SetStartDate(2009, 1, 1) self.SetCash(100000) symbols: Dict[str, str] = { 'CME_S1': Futures.Grains.Soybeans, 'CME_W1': Futures.Grains.Wheat, 'CME_SM1': Futures.Grains.SoybeanMeal, 'CME_C1': Futures.Grains.Corn, 'CME_O1': Futures.Grains.Oats, 'CME_LC1': Futures.Meats.LiveCattle, 'CME_FC1': Futures.Meats.FeederCattle, 'CME_LN1': Futures.Meats.LeanHogs, 'CME_GC1': Futures.Metals.Gold, 'CME_SI1': Futures.Metals.Silver, 'CME_PL1': Futures.Metals.Platinum, 'CME_HG1': Futures.Metals.Copper, 'CME_LB1': Futures.Forestry.RandomLengthLumber, 'CME_NG1': Futures.Energies.NaturalGas, 'CME_PA1': Futures.Metals.Palladium, 'CME_DA1': Futures.Dairy.ClassIIIMilk, 'CME_RB1': Futures.Energies.Gasoline, 'ICE_WT1': Futures.Energies.CrudeOilWTI, 'ICE_CC1': Futures.Softs.Cocoa, 'ICE_O1': Futures.Energies.HeatingOil, 'ICE_SB1': Futures.Softs.Sugar11CME, } self.futures_info: Dict[str, data_tools.FuturesInfo] = {} self.quantile: int = 5 min_expiration_days: int = 2 max_expiration_days: int = 360 for qp_symbol, qc_future in symbols.items(): # QP futures data: Security = self.AddData(data_tools.QuantpediaFutures, qp_symbol, Resolution.Daily) data.SetFeeModel(data_tools.CustomFeeModel()) data.SetLeverage(5) # QC futures future: Future = self.AddFuture(qc_future, Resolution.Daily) future.SetFilter(timedelta(days=min_expiration_days), timedelta(days=max_expiration_days)) self.futures_info[future.Symbol.Value] = data_tools.FuturesInfo(data.Symbol) self.recent_month: int = -1 self.Settings.MinimumOrderMarginPortfolioPercentage = 0. def find_and_update_contracts(self, futures_chain, symbol) -> None: near_contract: FuturesContract = None dist_contract: FuturesContract = None if symbol in futures_chain: contracts: List = [contract for contract in futures_chain[symbol] if contract.Expiry.date() > self.Time.date()] if len(contracts) >= 2: contracts: List = sorted(contracts, key=lambda x: x.Expiry, reverse=False) near_contract = contracts[0] dist_contract = contracts[1] self.futures_info[symbol].update_contracts(near_contract, dist_contract) def OnData(self, slice: Slice) -> None: if slice.FutureChains.Count > 0: for symbol, futures_info in self.futures_info.items(): # check if near contract is expired or is not initialized if not futures_info.is_initialized() or \ (futures_info.is_initialized() and futures_info.near_contract.Expiry.date() <= self.Time.date()): self.find_and_update_contracts(slice.FutureChains, symbol) roll_return: Dict[Symbol, float] = {} rebalance_flag: bool = False # roll return calculation for symbol, futures_info in self.futures_info.items(): # custom data is still coming if self.securities[futures_info.quantpedia_future].get_last_data() and self.time.date() > data_tools.QuantpediaFutures.get_last_update_date()[futures_info.quantpedia_future]: self.liquidate() return # futures data is present in the algorithm if futures_info.quantpedia_future in slice and slice[futures_info.quantpedia_future]: # new month rebalance if self.Time.month != self.recent_month and not self.IsWarmingUp: self.recent_month = self.Time.month rebalance_flag = True if rebalance_flag: if futures_info.is_initialized(): near_c: FuturesContract = futures_info.near_contract dist_c: FuturesContract = futures_info.distant_contract if self.Securities.ContainsKey(near_c.Symbol) and self.Securities.ContainsKey(dist_c.Symbol): raw_price1: float = self.Securities[near_c.Symbol].Close raw_price2: float = self.Securities[dist_c.Symbol].Close if raw_price1 != 0 and raw_price2 != 0: roll_return[futures_info.quantpedia_future] = raw_price1 / raw_price2 - 1 if rebalance_flag: weights: Dict[Symbol, float] = {} long: List[Symbol] = [] short: List[Symbol] = [] if len(roll_return) >= self.quantile: # roll return sorting sorted_by_roll: List[Tuple] = sorted(roll_return.items(), key = lambda x: x[1], reverse=True) quantile: int = int(len(sorted_by_roll) / self.quantile) long = [x[0] for x in sorted_by_roll[:quantile]] short = [x[0] for x in sorted_by_roll[-quantile:]] # trade execution invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in long + short: self.Liquidate(symbol) for i, portfolio in enumerate([long, short]): for symbol in portfolio: if symbol in slice and slice[symbol]: self.SetHoldings(symbol, ((-1) ** i) / len(portfolio))
#region imports from AlgorithmImports import * #endregion class FuturesInfo(): def __init__(self, quantpedia_future:Symbol) -> None: self.quantpedia_future:Symbol = quantpedia_future self.near_contract:FuturesContract = None self.distant_contract:FuturesContract = None def update_contracts(self, near_contract:FuturesContract, distant_contract:FuturesContract) -> None: self.near_contract = near_contract self.distant_contract = distant_contract def is_initialized(self) -> bool: return self.near_contract is not None and self.distant_contract is not None # Custom fee model. class CustomFeeModel(): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD")) # Quantpedia data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaFutures(PythonData): _last_update_date:Dict[str, datetime.date] = {} @staticmethod def get_last_update_date() -> Dict[str, datetime.date]: return QuantpediaFutures._last_update_date def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource: return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData: data = QuantpediaFutures() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1) data['back_adjusted'] = float(split[1]) data['spliced'] = float(split[2]) data.Value = float(split[1]) # store last update date if config.Symbol not in QuantpediaFutures._last_update_date: QuantpediaFutures._last_update_date[config.Symbol] = datetime(1,1,1).date() if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol]: QuantpediaFutures._last_update_date[config.Symbol] = data.Time.date() return data