Overall Statistics |
Total Orders
113439
Average Win
0.06%
Average Loss
-0.04%
Compounding Annual Return
4.156%
Drawdown
48.400%
Expectancy
0.054
Start Equity
100000
End Equity
274183.53
Net Profit
174.184%
Sharpe Ratio
0.126
Sortino Ratio
0.162
Probabilistic Sharpe Ratio
0.000%
Loss Rate
55%
Win Rate
45%
Profit-Loss Ratio
1.35
Alpha
0.042
Beta
-0.48
Annual Standard Deviation
0.17
Annual Variance
0.029
Information Ratio
-0.077
Tracking Error
0.28
Treynor Ratio
-0.045
Total Fees
$11055.76
Estimated Strategy Capacity
$60000000.00
Lowest Capacity Asset
FRHC X8OYENU5NT5X
Portfolio Turnover
8.02%
|
# https://quantpedia.com/strategies/combining-fundamental-fscore-and-equity-short-term-reversals/ # # The investment universe consists of common stocks (share code 10 or 11) listed in NYSE, AMEX, and NASDAQ exchanges. # Stocks with prices less than $5 at the end of the formation period are excluded. # The range of FSCORE is from zero to nine points. Each signal is equal to one (zero) point if the signal indicates a positive # (negative) financial performance. A firm scores one point if it has realized a positive return-on-assets (ROA), a positive # cash flow from operations, a positive change in ROA, a positive difference between net income from operations (Accrual), # a decrease in the ratio of long-term debt to total assets, a positive change in the current ratio, no-issuance of new common # equity, a positive change in gross margin ratio and lastly a positive change in asset turnover ratio. Firstly, construct a quarterly # FSCORE using the most recently available quarterly financial statement information. # Monthly reversal data are matched each month with a most recently available quarterly FSCORE. The firm is classified as a fundamentally # strong firm if the firm’s FSCORE is greater than or equal to seven (7-9), fundamentally middle firm (4-6) and fundamentally weak firm (0-3). # Secondly, identify the large stocks subset – those in the top 40% of all sample stocks in terms of market capitalization # at the end of formation month t. After that, stocks are sorted on the past 1-month returns and firm’s most recently available quarterly FSCORE. # Take a long position in past losers with favorable fundamentals (7-9) and simultaneously a short position in past winners with unfavorable # fundamentals (0-3). The strategy is equally weighted and rebalanced monthly. # # QC implementation changes: # - Instead of all listed stock, we select 3000 largest stocks traded on NYSE, AMEX, or NASDAQ. from AlgorithmImports import * from typing import List, Dict from numpy import floor, isnan from functools import reduce from pandas.core.frame import DataFrame import data_tools class CombiningFSCOREShortTermReversals(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.exchange_codes:List[str] = ['NYS', 'NAS', 'ASE'] self.financial_statement_names:List[str] = [ 'EarningReports.BasicAverageShares.ThreeMonths', 'EarningReports.BasicEPS.TwelveMonths', 'OperationRatios.ROA.ThreeMonths', 'OperationRatios.GrossMargin.ThreeMonths', 'FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.ThreeMonths', 'FinancialStatements.IncomeStatement.NormalizedIncome.ThreeMonths', 'FinancialStatements.BalanceSheet.LongTermDebt.ThreeMonths', 'FinancialStatements.BalanceSheet.TotalAssets.ThreeMonths', 'FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths', 'FinancialStatements.IncomeStatement.TotalRevenueAsReported.ThreeMonths', 'ValuationRatios.PERatio', 'OperationRatios.CurrentRatio.ThreeMonths', ] self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.leverage:int = 10 self.min_share_price:int = 5 self.period = 21 self.long:List[Symbol] = [] self.short:List[Symbol] = [] self.stock_data:Dict[Symbol, data_tools.StockData] = {} self.data:Dict[Symbol, data_tools.SymbolData] = {} market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.fundamental_count:int = 3000 self.fundamental_sorting_key = lambda x: x.MarketCap self.selection_flag = False self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Schedule.On(self.DateRules.MonthEnd(market), self.TimeRules.AfterMarketOpen(market), self.Selection) self.settings.daily_precise_end_time = False def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(data_tools.CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # Update the rolling window every day. for stock in fundamental: symbol:Symbol = stock.Symbol # Store daily price. if symbol in self.data: self.data[symbol].update(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged selected:List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.Price > self.min_share_price \ and all((not isnan(self.rgetattr(x, statement_name)) and self.rgetattr(x, statement_name) != 0) for statement_name in self.financial_statement_names) \ and x.SecurityReference.ExchangeId in self.exchange_codes ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # Warmup price rolling windows. for stock in selected: symbol:Symbol = stock.Symbol if symbol in self.data: continue self.data[symbol] = data_tools.SymbolData(symbol, self.period) history:DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet.") continue closes:Series = history.loc[symbol].close for time, close in closes.items(): self.data[symbol].update(close) # BM sorting sorted_by_market_cap:List[Fundamental] = sorted(selected, key = lambda x: x.MarketCap, reverse = True) lenght:int = int((len(sorted_by_market_cap) / 100) * 40) top_by_market_cap:List[Fundamental] = [x for x in sorted_by_market_cap[:lenght]] fine_symbols:List[Symbol] = [x.Symbol for x in top_by_market_cap] score_performance:Dict[Symbol, Tuple[float]] = {} for stock in top_by_market_cap: symbol:Symbol = stock.Symbol if not self.data[symbol].is_ready(): continue if symbol not in self.stock_data: self.stock_data[symbol] = data_tools.StockData() # Contains latest data. roa:float = stock.OperationRatios.ROA.ThreeMonths cfo:float = stock.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.ThreeMonths leverage:float = stock.FinancialStatements.BalanceSheet.LongTermDebt.ThreeMonths / stock.FinancialStatements.BalanceSheet.TotalAssets.ThreeMonths liquidity:float = stock.OperationRatios.CurrentRatio.ThreeMonths equity_offering:float = stock.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths gross_margin:float = stock.OperationRatios.GrossMargin.ThreeMonths turnover:float = stock.FinancialStatements.IncomeStatement.TotalRevenueAsReported.ThreeMonths / stock.FinancialStatements.BalanceSheet.TotalAssets.ThreeMonths # Check if data has previous year's data ready. stock_data = self.stock_data[symbol] if (stock_data.ROA == 0) or (stock_data.Leverage == 0) or (stock_data.Liquidity == 0) or (stock_data.Equity_offering == 0) or (stock_data.Gross_margin == 0) or (stock_data.Turnover == 0): stock_data.Update(roa, leverage, liquidity, equity_offering, gross_margin, turnover) continue score:int = 0 if roa > 0: score += 1 if cfo > 0: score += 1 if roa > stock_data.ROA: # ROA change is positive score += 1 if cfo > roa: score += 1 if leverage < stock_data.Leverage: score += 1 if liquidity > stock_data.Liquidity: score += 1 if equity_offering < stock_data.Equity_offering: score += 1 if gross_margin > stock_data.Gross_margin: score += 1 if turnover > stock_data.Turnover: score += 1 score_performance[symbol] = (score, self.data[symbol].performance()) # Update new (this year's) data. stock_data.Update(roa, leverage, liquidity, equity_offering, gross_margin, turnover) # Clear out not updated data. for symbol in self.stock_data: if symbol not in fine_symbols: self.stock_data[symbol] = data_tools.StockData() # Performance sorting and F score sorting. self.long = [x[0] for x in score_performance.items() if x[1][0] >= 7 and x[1][1] < 0] self.short = [x[0] for x in score_performance.items() if x[1][0] <= 3 and x[1][1] > 0] return self.long + self.short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution. targets:List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long, self.short]): for symbol in portfolio: if symbol in data and data[symbol]: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long.clear() self.short.clear() def Selection(self) -> None: self.selection_flag = True # https://gist.github.com/wonderbeyond/d293e7a2af1de4873f2d757edd580288 def rgetattr(self, obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return reduce(_getattr, [obj] + attr.split('.'))
from AlgorithmImports import * class StockData(): def __init__(self): self.ROA = 0 self.Leverage = 0 self.Liquidity = 0 self.Equity_offering = 0 self.Gross_margin = 0 self.Turnover = 0 def Update(self, ROA, leverage, liquidity, eq_offering, gross_margin, turnover): self.ROA = ROA self.Leverage = leverage self.Liquidity = liquidity self.Equity_offering = eq_offering self.Gross_margin = gross_margin self.Turnover = turnover class SymbolData(): def __init__(self, symbol, period): self.Symbol = symbol self.Price = RollingWindow[float](period) def update(self, value): self.Price.Add(value) def is_ready(self) -> bool: return self.Price.IsReady def performance(self, values_to_skip = 0) -> float: closes = [x for x in self.Price][values_to_skip:] return (closes[0] / closes[-1] - 1) # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))