Overall Statistics
Total Trades
2456
Average Win
0.53%
Average Loss
-0.43%
Compounding Annual Return
5.157%
Drawdown
18.000%
Expectancy
0.212
Net Profit
180.316%
Sharpe Ratio
0.652
Probabilistic Sharpe Ratio
3.577%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.25
Alpha
0.044
Beta
0.006
Annual Standard Deviation
0.069
Annual Variance
0.005
Information Ratio
-0.094
Tracking Error
0.19
Treynor Ratio
6.984
Total Fees
$887.22
# https://quantpedia.com/strategies/skewness-effect-in-commodities/
#
# The investment universe consists of 27 futures contracts on commodities. Each month, investor calculates skewness (3rd moment of returns) 
# from daily returns from data going 12 months into the past for all futures. Commodities are then sorted into quintiles and investor goes 
# long quintile containing the commodities with the 20% lowest total skewness and short quintile containing the commodities with the 20% highest
# total skewness (over a ranking period of 12 months). The resultant portfolio is equally weighted and rebalanced each month.

import numpy as np
import fk_tools
from scipy.stats import skew
from collections import deque
from math import sqrt

class SkewnessEffect(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2000, 1, 1)
        self.SetCash(100000)

        self.symbols = [
                        "CME_S1",   # Soybean Futures, Continuous Contract
                        "CME_W1",   # Wheat Futures, Continuous Contract
                        "CME_SM1",  # Soybean Meal Futures, Continuous Contract
                        "CME_BO1",  # Soybean Oil Futures, Continuous Contract
                        "CME_C1",   # Corn Futures, Continuous Contract
                        "CME_O1",   # Oats Futures, Continuous Contract
                        "CME_LC1",  # Live Cattle Futures, Continuous Contract
                        "CME_FC1",  # Feeder Cattle Futures, Continuous Contract
                        "CME_LN1",  # Lean Hog Futures, Continuous Contract
                        "CME_GC1",  # Gold Futures, Continuous Contract
                        "CME_SI1",  # Silver Futures, Continuous Contract
                        "CME_PL1",  # Platinum Futures, Continuous Contract
                        "CME_CL1",  # Crude Oil Futures, Continuous Contract
                        "CME_HG1",  # Copper Futures, Continuous Contract
                        "CME_LB1",  # Random Length Lumber Futures, Continuous Contract
                        "CME_NG1",  # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
                        "CME_PA1",  # Palladium Futures, Continuous Contract 
                        "CME_RR1",  # Rough Rice Futures, Continuous Contract
                        "CME_CU1",  # Chicago Ethanol (Platts) Futures
                        "CME_DA1",  # Class III Milk Futures
                        
                        "ICE_CC1",  # Cocoa Futures, Continuous Contract 
                        "ICE_CT1",  # Cotton No. 2 Futures, Continuous Contract
                        "ICE_KC1",  # Coffee C Futures, Continuous Contract
                        "ICE_O1",   # Heating Oil Futures, Continuous Contract
                        "ICE_OJ1",  # Orange Juice Futures, Continuous Contract
                        "ICE_SB1"  # Sugar No. 11 Futures, Continuous Contract
                        ]
        
        self.period = 12 * 21
        self.SetWarmup(self.period)
        
        self.targeted_volatility = 0.10
        
        # Daily price data.
        self.data = {}
        
        # True -> Quantpedia data
        # False -> Quandl free data
        self.use_quantpedia_data = True
        
        if not self.use_quantpedia_data:
            self.symbols = ['CHRIS/' + x for x in self.symbols]

        for symbol in self.symbols:
            data = None
            if self.use_quantpedia_data:
                data = self.AddData(fk_tools.QuantpediaFutures, symbol, Resolution.Daily)
            else:
                data = self.AddData(fk_tools.QuandlFutures, symbol, Resolution.Daily)

            data.SetFeeModel(fk_tools.CustomFeeModel(self))
            data.SetLeverage(20)

            self.data[symbol] = deque(maxlen=self.period) 
            
        self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.AfterMarketOpen(self.symbols[0]), self.Rebalance)
    
    def OnData(self, data):
        for symbol in self.symbols:
            if self.Securities.ContainsKey(symbol):
                price = self.Securities[symbol].Price
                if price != 0:
                    self.data[symbol].append(price)
                else:
                    # Append latest price as a next one in case there's 0 as price.
                    if len(self.data[symbol]) > 0:
                        last_price = self.data[symbol][-1]
                        self.data[symbol].append(last_price)

    def Rebalance(self):
        if self.IsWarmingUp: return
        
        # Skewness calculation
        skewness_data = {}
        volatility = {}
        
        for symbol in self.symbols:
            if len(self.data[symbol]) == self.data[symbol].maxlen:
                prices = np.array([x for x in self.data[symbol]])
                returns = (prices[1:]-prices[:-1]) / prices[:-1]
                if len(returns) == self.period - 1:
                    # NOTE: Manual skewness calculation example
                    # avg = np.average(returns)
                    # std = np.std(returns)
                    # skewness = (sum(np.power((x - avg), 3) for x in returns)) / ((self.return_history[symbol].maxlen-1) * np.power(std, 3))
                    skewness_data[symbol] = skew(returns)
                    volatility[symbol] = fk_tools.Volatility(prices[-21:]) * sqrt(252)
        
        if len(skewness_data) == 0 or len(volatility) == 0:
            self.Liquidate()
            return
        
        # Skewness sorting
        sorted_by_skewness = sorted(skewness_data.items(), key = lambda x: x[1], reverse = True)
        quintile = int(len(sorted_by_skewness) / 5)
        long = [x[0] for x in sorted_by_skewness[-quintile:]]
        short = [x[0] for x in sorted_by_skewness[:quintile]]

        # Volatility targeting.
        count = len(long + short)
        portfolio_volatility = sum([((volatility[x]) / count) for x in long + short])
        volatility_target_leverage = self.targeted_volatility / portfolio_volatility

        # Trade execution
        invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
        for symbol in invested:
            if symbol not in long + short:
                self.Liquidate(symbol)

        for symbol in long:
            self.SetHoldings(symbol, volatility_target_leverage / len(long))
        for symbol in short:
            self.SetHoldings(symbol, -volatility_target_leverage / len(short))
import numpy as np
from scipy.optimize import minimize

sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRK.B','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']

def Return(values):
    return (values[-1] - values[0]) / values[0]
    
def Volatility(values):
    values = np.array(values)
    returns = (values[1:] - values[:-1]) / values[:-1]
    return np.std(returns)  

# Custom fee model
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))

# Quandl free data
class QuandlFutures(PythonQuandl):
    def __init__(self):
        self.ValueColumnName = "settle"
        
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
    def GetSource(self, config, date, isLiveMode):
        return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)

    def Reader(self, config, line, date, isLiveMode):
        data = QuantpediaFutures()
        data.Symbol = config.Symbol
        
        if not line[0].isdigit(): return None
        split = line.split(';')
        
        data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
        data['back_adjusted'] = float(split[1])
        data['spliced'] = float(split[2])
        data.Value = float(split[1])

        return data
        
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
    def __init__(self, algorithm, long_size, short_size, holding_period):
        self.algorithm = algorithm  # algorithm to execute orders in.
        
        self.long_size = long_size
        self.short_size = short_size
        self.weight = 1 / (self.long_size + self.short_size)
        
        self.long_len = 0
        self.short_len = 0
    
        # Arrays of ManagedSymbols
        self.symbols = []
        
        self.holding_period = holding_period    # Days of holding.
    
    # Add stock symbol object
    def Add(self, symbol, long_flag):
        # Open new long trade.
        managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
        
        if long_flag:
            # If there's a place for it.
            if self.long_len < self.long_size:
                self.symbols.append(managed_symbol)
                self.algorithm.SetHoldings(symbol, self.weight)
                self.long_len += 1
        # Open new short trade.
        else:
            # If there's a place for it.
            if self.long_len < self.short_size:
                self.symbols.append(managed_symbol)
                self.algorithm.SetHoldings(symbol, - self.weight)
                self.short_len += 1
    
    # Decrement holding period and liquidate symbols.
    def TryLiquidate(self):
        symbols_to_delete = []
        for managed_symbol in self.symbols:
            managed_symbol.days_to_liquidate -= 1
            
            # Liquidate.
            if managed_symbol.days_to_liquidate == 0:
                symbols_to_delete.append(managed_symbol)
                self.algorithm.Liquidate(managed_symbol.symbol)
                if managed_symbol.long_flag: self.long_len -= 1
                else: self.short_len -= 1

        # Remove symbols from management.
        for managed_symbol in symbols_to_delete:
            self.symbols.remove(managed_symbol)

class ManagedSymbol():
    def __init__(self, symbol, days_to_liquidate, long_flag):
        self.symbol = symbol
        self.days_to_liquidate = days_to_liquidate
        self.long_flag = long_flag
        
class PortfolioOptimization(object):
    def __init__(self, df_return, risk_free_rate, num_assets):
        self.daily_return = df_return
        self.risk_free_rate = risk_free_rate
        self.n = num_assets # numbers of risk assets in portfolio
        self.target_vol = 0.05

    def annual_port_return(self, weights):
        # calculate the annual return of portfolio
        return np.sum(self.daily_return.mean() * weights) * 252

    def annual_port_vol(self, weights):
        # calculate the annual volatility of portfolio
        return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))

    def min_func(self, weights):
        # method 1: maximize sharp ratio
        return - self.annual_port_return(weights) / self.annual_port_vol(weights)
        
        # method 2: maximize the return with target volatility
        #return - self.annual_port_return(weights) / self.target_vol

    def opt_portfolio(self):
        # maximize the sharpe ratio to find the optimal weights
        cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
        bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
        opt = minimize(self.min_func,                               # object function
                       np.array(self.n * [1. / self.n]),            # initial value
                       method='SLSQP',                              # optimization method
                       bounds=bnds,                                 # bounds for variables 
                       constraints=cons)                            # constraint conditions
                      
        opt_weights = opt['x']
 
        return opt_weights