Overall Statistics |
Total Orders
7607
Average Win
1.20%
Average Loss
-1.03%
Compounding Annual Return
-3.456%
Drawdown
68.900%
Expectancy
0.043
Start Equity
100000
End Equity
41594.48
Net Profit
-58.406%
Sharpe Ratio
-0.357
Sortino Ratio
-0.343
Probabilistic Sharpe Ratio
0.000%
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
1.17
Alpha
-0.041
Beta
0.024
Annual Standard Deviation
0.112
Annual Variance
0.013
Information Ratio
-0.44
Tracking Error
0.191
Treynor Ratio
-1.642
Total Fees
$7976.24
Estimated Strategy Capacity
$0
Lowest Capacity Asset
ICE_WT1.QuantpediaFutures 2S
Portfolio Turnover
26.56%
|
# https://quantpedia.com/strategies/trading-wti-brent-spread/ # # A 20-day moving average of WTI/Brent spread is calculated each day. If the current spread value is above SMA 20 then we enter a short position # in the spread on close (betting that the spread will decrease to the fair value represented by SMA 20). The trade is closed at the close of the # trading day when the spread crosses below fair value. If the current spread value is below SMA 20 then we enter a long position betting that # the spread will increase and the trade is closed at the close of the trading day when the spread crosses above fair value. #region imports from AlgorithmImports import * #endregion class WTIBRENTSpread(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.symbols = [ "ICE_WT1", # WTI Crude Futures, Continuous Contract "ICE_B1" # Brent Crude Oil Futures, Continuous Contract ] self.spread = RollingWindow[float](20) for symbol in self.symbols: data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily) data.SetLeverage(5) data.SetFeeModel(CustomFeeModel()) def OnData(self, data): symbol1 = self.Symbol(self.symbols[0]) symbol2 = self.Symbol(self.symbols[1]) if symbol1 in data.Keys and symbol2 in data.Keys and data[symbol1] and data[symbol2]: price1 = data[symbol1].Price price2 = data[symbol2].Price if price1 != 0 and price2 != 0: spread = price1 - price2 self.spread.Add(spread) # MA calculation. if self.spread.IsReady: if all([self.securities[symbol].get_last_data() and self.time.date() < QuantpediaFutures.get_last_update_date()[symbol] for symbol in [symbol1, symbol2]]): spreads = [x for x in self.spread] spread_ma20 = sum(spreads) / len(spreads) current_spread = spreads[0] if current_spread > spread_ma20: self.SetHoldings(symbol1, -1) self.SetHoldings(symbol2, 1) elif current_spread < spread_ma20: self.SetHoldings(symbol1, 1) self.SetHoldings(symbol2, -1) else: self.Liquidate() # Quantpedia data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaFutures(PythonData): _last_update_date:Dict[Symbol, datetime.date] = {} @staticmethod def get_last_update_date() -> Dict[Symbol, datetime.date]: return QuantpediaFutures._last_update_date def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config, line, date, isLiveMode): data = QuantpediaFutures() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1) data['back_adjusted'] = float(split[1]) data['spliced'] = float(split[2]) data.Value = float(split[1]) if config.Symbol not in QuantpediaFutures._last_update_date: QuantpediaFutures._last_update_date[config.Symbol] = datetime(1,1,1).date() if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol]: QuantpediaFutures._last_update_date[config.Symbol] = data.Time.date() return data # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))