Overall Statistics |
Total Orders
1227
Average Win
1.28%
Average Loss
-1.15%
Compounding Annual Return
-1.313%
Drawdown
58.800%
Expectancy
-0.010
Start Equity
100000
End Equity
82362.69
Net Profit
-17.637%
Sharpe Ratio
-0.142
Sortino Ratio
-0.173
Probabilistic Sharpe Ratio
0.000%
Loss Rate
53%
Win Rate
47%
Profit-Loss Ratio
1.12
Alpha
-0.016
Beta
-0.022
Annual Standard Deviation
0.124
Annual Variance
0.015
Information Ratio
-0.546
Tracking Error
0.191
Treynor Ratio
0.816
Total Fees
$1936.09
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_S1.QuantpediaFutures 2S
Portfolio Turnover
5.81%
|
#region imports from AlgorithmImports import * #endregion class FuturesInfo(): def __init__(self, quantpedia_future:Symbol) -> None: self.quantpedia_future:Symbol = quantpedia_future self.near_contract:FuturesContract = None def update_contracts(self, near_contract:FuturesContract) -> None: self.near_contract = near_contract def is_initialized(self) -> bool: return self.near_contract is not None # Custom fee model. class CustomFeeModel(): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD")) # Quantpedia data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaFutures(PythonData): _last_update_date:Dict[str, datetime.date] = {} @staticmethod def get_last_update_date() -> Dict[str, datetime.date]: return QuantpediaFutures._last_update_date def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource: return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData: data = QuantpediaFutures() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1) data['back_adjusted'] = float(split[1]) data['spliced'] = float(split[2]) data.Value = float(split[1]) # store last update date if config.Symbol.Value not in QuantpediaFutures._last_update_date: QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date() if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]: QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date() return data
# https://quantpedia.com/strategies/short-term-reversal-with-futures/ # # The investment universe consists of 24 types of US futures contracts (4 currencies, 5 financials, 8 agricultural, 7 commodities). # A weekly time frame is used – a Wednesday- Wednesday interval. The contract closest to expiration is used, except within the delivery # month, in which the second-nearest contract is used. Rolling into the second nearest contract is done at the beginning of the delivery month. # The contract is defined as the high- (low-) volume contract if the contract’s volume changes between period from t-1 to t and period from t-2 # to t-1 is above (below) the median volume change of all contracts (weekly trading volume is detrended by dividing the trading volume by its # sample mean to make the volume measure comparable across markets). All contracts are also assigned to either high-open interest (top 50% of # changes in open interest) or low-open interest groups (bottom 50% of changes in open interest) based on lagged changes in open interest between # the period from t-1 to t and period from t-2 to t-1. The investor goes long (short) on futures from the high-volume, low-open interest group # with the lowest (greatest) returns in the previous week. The weight of each contract is proportional to the difference between the return # of the contract over the past one week and the equal-weighted average of returns on the N (number of contracts in a group) contracts during that period. #region imports from AlgorithmImports import * from collections import deque import numpy as np import data_tools #endregion class ShortTermReversalwithFutures(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetCash(100000) symbols:Dict[str, str] = { 'CME_S1': Futures.Grains.Soybeans, 'CME_W1': Futures.Grains.Wheat, 'CME_BO1': Futures.Grains.SoybeanOil, 'CME_C1': Futures.Grains.Corn, 'CME_LC1': Futures.Meats.LiveCattle, 'CME_FC1': Futures.Meats.FeederCattle, 'CME_KW2': Futures.Grains.Wheat, 'ICE_CC1': Futures.Softs.Cocoa, 'ICE_SB1': Futures.Softs.Sugar11CME, 'CME_GC1': Futures.Metals.Gold, 'CME_SI1': Futures.Metals.Silver, 'CME_PL1': Futures.Metals.Platinum, 'CME_RB1': Futures.Energies.Gasoline, 'ICE_WT1': Futures.Energies.CrudeOilWTI, 'ICE_O1': Futures.Energies.HeatingOil, 'CME_BP1': Futures.Currencies.GBP, 'CME_EC1': Futures.Currencies.EUR, 'CME_JY1': Futures.Currencies.JPY, 'CME_SF1': Futures.Currencies.CHF, 'CME_ES1': Futures.Indices.SP500EMini, 'CME_TY1': Futures.Financials.Y10TreasuryNote, 'CME_FV1': Futures.Financials.Y5TreasuryNote, } self.period:int = 14 self.futures_info:Dict = {} min_expiration_days:int = 2 max_expiration_days:int = 360 # daily close, volume and open interest data self.data:Dict = {} self.quantile:int = 2 for qp_symbol, qc_future in symbols.items(): # QP futures data:Security = self.AddData(data_tools.QuantpediaFutures, qp_symbol, Resolution.Daily) data.SetFeeModel(data_tools.CustomFeeModel()) data.SetLeverage(5) self.data[data.Symbol] = deque(maxlen=self.period) # QC futures future:Future = self.AddFuture(qc_future, Resolution.Daily) future.SetFilter(timedelta(days=min_expiration_days), timedelta(days=max_expiration_days)) self.futures_info[future.Symbol.Value] = data_tools.FuturesInfo(data.Symbol) self.recent_month:int = -1 self.Settings.MinimumOrderMarginPortfolioPercentage = 0. def find_and_update_contracts(self, futures_chain, symbol) -> None: near_contract:FuturesContract = None if symbol in futures_chain: contracts:List = [contract for contract in futures_chain[symbol] if contract.Expiry.date() > self.Time.date()] if len(contracts) >= 2: contracts:List = sorted(contracts, key=lambda x: x.Expiry, reverse=False) near_contract = contracts[0] self.futures_info[symbol].update_contracts(near_contract) def OnData(self, data: Slice) -> None: if data.FutureChains.Count > 0: for symbol, futures_info in self.futures_info.items(): # check if near contract is expired or is not initialized if not futures_info.is_initialized() or \ (futures_info.is_initialized() and futures_info.near_contract.Expiry.date() <= self.Time.date()): self.find_and_update_contracts(data.FutureChains, symbol) rebalance_flag:bool = False ret_volume_oi_data:Dict[Symbol, Tuple[float]] = {} # roll return calculation for symbol, futures_info in self.futures_info.items(): # futures data is present in the algorithm if futures_info.quantpedia_future in data and data[futures_info.quantpedia_future]: # new month rebalance if self.Time.month != self.recent_month and not self.IsWarmingUp: self.recent_month = self.Time.month rebalance_flag = True if futures_info.is_initialized(): near_c:FuturesContract = futures_info.near_contract if self.Securities.ContainsKey(near_c.Symbol): # store daily data price:float = data[futures_info.quantpedia_future].Value vol:int = self.Securities[near_c.Symbol].Volume oi:int = self.Securities[near_c.Symbol].OpenInterest if price != 0 and vol != 0 and oi != 0: self.data[futures_info.quantpedia_future].append((price, vol, oi)) if rebalance_flag: if len(self.data[futures_info.quantpedia_future]) == self.data[futures_info.quantpedia_future].maxlen: # performance prices:List[float] = [x[0] for x in self.data[futures_info.quantpedia_future]] half:List[float] = int(len(prices)/2) prices:List[float] = prices[-half:] ret:float = prices[-1] / prices[0] - 1 # volume change volumes:List[int] = [x[1] for x in self.data[futures_info.quantpedia_future]] volumes_t1:List[int] = volumes[-half:] t1_vol_mean:float = np.mean(volumes_t1) t1_vol_total:float = sum(volumes_t1) / t1_vol_mean volumes_t2:List[int] = volumes[:half] t2_vol_mean:float = np.mean(volumes_t2) t2_vol_total:float = sum(volumes_t2) / t2_vol_mean volume_weekly_diff:float = t1_vol_total - t2_vol_total # open interest change interests:List[int] = [x[2] for x in self.data[futures_info.quantpedia_future]] t1_oi:List[int] = interests[-half:] t1_oi_total:float = sum(t1_oi) t2_oi:List[int] = interests[:half] t2_oi_total:float = sum(t2_oi) oi_weekly_diff:float = t1_oi_total - t2_oi_total # store weekly diff data ret_volume_oi_data[futures_info.quantpedia_future] = (ret, volume_weekly_diff, oi_weekly_diff) if rebalance_flag: weight:Dict[Symbol, float] = {} if len(ret_volume_oi_data) > self.quantile * 2: volume_sorted:List = sorted(ret_volume_oi_data.items(), key = lambda x: x[1][1], reverse = True) quantile:int = int(len(volume_sorted) / self.quantile) high_volume:List = [x for x in volume_sorted[:quantile]] open_interest_sorted:List = sorted(ret_volume_oi_data.items(), key = lambda x: x[1][2], reverse = True) quantile = int(len(open_interest_sorted) / self.quantile) low_oi:List = [x for x in open_interest_sorted[-quantile:]] filtered:List = [x for x in high_volume if x in low_oi] filtered_by_return:List = sorted(filtered, key = lambda x : x[0], reverse = True) quantile = int(len(filtered_by_return) / self.quantile) long:List[Symbol] = filtered_by_return[-quantile:] short:List[Symbol] = filtered_by_return[:quantile] if len(long + short) >= 2: # return weighting diff:Dict[Symbol, float] = {} avg_ret:float = np.average([x[1][0] for x in long + short]) for symbol, ret_volume_oi in long + short: diff[symbol] = ret_volume_oi[0] - avg_ret total_diff:float = sum([abs(x[1]) for x in diff.items()]) long_symbols:List[Symbol] = [x[0] for x in long] if total_diff != 0: for symbol, data in long + short: if symbol in long_symbols: weight[symbol] = diff[symbol] / total_diff else: weight[symbol] = - diff[symbol] / total_diff # trade execution invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in weight: self.Liquidate(symbol) for symbol, w in weight.items(): self.SetHoldings(symbol, w)