Overall Statistics |
Total Trades
19
Average Win
2.82%
Average Loss
-2.79%
Compounding Annual Return
6.017%
Drawdown
33.700%
Expectancy
0.006
Net Profit
295.243%
Sharpe Ratio
0.453
Probabilistic Sharpe Ratio
0.068%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.01
Alpha
0.022
Beta
0.407
Annual Standard Deviation
0.103
Annual Variance
0.011
Information Ratio
-0.105
Tracking Error
0.124
Treynor Ratio
0.115
Total Fees
$86.01
Estimated Strategy Capacity
$510000000.00
Lowest Capacity Asset
SPY R735QTJ8XC9X
Portfolio Turnover
0.15%
|
# https://quantpedia.com/strategies/fed-model/ # # Each month, the investor conducts a one-month predictive regression (using all available data up to that date) predicting excess stock market # returns using the yield gap as an independent variable. The “Yield gap” is calculated as YG = EY − y, with earnings yield EY ≡ ln (1 ++ E/P) # and y = ln (1 ++ Y) is the log 10 year Treasury bond yield. Then, the strategy allocates 100% in the risky asset if the forecasted excess # returns are positive, and otherwise, it invests 100% in the risk-free rate. from collections import deque from AlgorithmImports import * from typing import List, Tuple, Deque import numpy as np from scipy import stats class FEDModel(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.period:int = 12 * 21 self.SetWarmUp(self.period) self.market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.market_data:Deque[Tuple[float,float]] = deque() self.cash:Symbol = self.AddEquity('SHY', Resolution.Daily).Symbol # risk free rate self.risk_free_rate:Symbol = self.AddData(QuandlValue, 'OECD/KEI_IR3TIB01_USA_ST_M', Resolution.Daily).Symbol # 10Y bond yield symbol self.bond_yield:Symbol = self.AddData(QuantpediaBondYield, 'US10YT', Resolution.Daily).Symbol # SP500 earnings yield data self.sp_earnings_yield:Symbol = self.AddData(QuandlValue, 'MULTPL/SP500_EARNINGS_YIELD_MONTH', Resolution.Daily).Symbol self.yield_gap:Deque[float] = deque() self.recent_month:int = -1 def OnData(self, data:Slice) -> None: rebalance_flag:bool = False if self.sp_earnings_yield in data and data[self.sp_earnings_yield]: if self.Time.month != self.recent_month: self.recent_month = self.Time.month rebalance_flag = True if not rebalance_flag: # earnings yield data is no longer comming in if self.Securities[self.sp_earnings_yield].GetLastData(): if (self.Time.date() - self.Securities[self.sp_earnings_yield].GetLastData().Time.date()).days > 31: self.Liquidate() return # update market price data if self.market in data and self.bond_yield in data: if data[self.market] and data[self.bond_yield] and self.Securities[self.risk_free_rate].GetLastData(): market_price:float = data[self.market].Value rf_rate:float = self.Securities[self.risk_free_rate].Price bond_yield:float = data[self.bond_yield].Value sp_ey:float = data[self.sp_earnings_yield].Value if market_price != 0 and rf_rate != 0 and bond_yield != 0 and sp_ey != 0: self.market_data.append((market_price, rf_rate)) yield_gap:float = np.log(sp_ey) - np.log(bond_yield) self.yield_gap.append(yield_gap) rebalance_flag = True # ensure minimum data points to calculate regression min_count:int = 6 if len(self.market_data) >= min_count: market_closes:np.array = np.array([x[0] for x in self.market_data]) market_returns:np.array = (market_closes[1:] - market_closes[:-1]) / market_closes[:-1] rf_rates:np.array = np.array([x[1] for x in self.market_data][1:]) excess_returns:np.array = market_returns - rf_rates yield_gaps:List[float] = [x for x in self.yield_gap] # linear regression # Y = α + (β ∗ X) # intercept = alpha # slope = beta beta, alpha, r_value, p_value, std_err = stats.linregress(yield_gaps[1:-1], market_returns[1:]) X:float = yield_gaps[-1] # predicted market return Y:float = alpha + (beta * X) # trade execution / rebalance if Y > 0: if self.Portfolio[self.cash].Invested: self.Liquidate(self.cash) self.SetHoldings(self.market, 1) else: if self.Portfolio[self.market].Invested: self.Liquidate(self.market) self.SetHoldings(self.cash, 1) # Quantpedia bond yield data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaBondYield(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config, line, date, isLiveMode): data = QuantpediaBondYield() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(',') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1) data['yield'] = float(split[1]) data.Value = float(split[1]) return data # Quandl "value" data class QuandlValue(PythonQuandl): def __init__(self): self.ValueColumnName = 'Value'