Overall Statistics |
Total Trades
8015
Average Win
0.20%
Average Loss
-0.20%
Compounding Annual Return
1.657%
Drawdown
11.000%
Expectancy
0.050
Net Profit
46.971%
Sharpe Ratio
0.34
Probabilistic Sharpe Ratio
0.005%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.99
Alpha
0.007
Beta
0.082
Annual Standard Deviation
0.035
Annual Variance
0.001
Information Ratio
-0.305
Tracking Error
0.152
Treynor Ratio
0.148
Total Fees
$18478.00
Estimated Strategy Capacity
$580000000.00
Lowest Capacity Asset
SPY R735QTJ8XC9X
Portfolio Turnover
51.52%
|
# https://quantpedia.com/strategies/market-sentiment-and-an-overnight-anomaly/ # # The investment universe consists of SPY ETF, and the price of SPY, price of VIX and Brain Market Sentiment (BMS) indicator # are used to identify the market sentiment. The investor buys SPY ETF and holds it overnight; when the price of SPY is above its 20-day moving average, # the price of VIX is below its moving average, and the value of the BMS indicator is greater than its 20-day moving average. # Note that the authors suggest using this strategy as an overlay when deciding whether to make a trade rather than using this system on its own. # # QC Implementation: # region imports from AlgorithmImports import * # endregion class MarketSentimentAndAnOvernightAnomaly(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.period:int = 20 # sma period self.weight:float = 0 self.price_data:dict = {} self.spy_symbol:Symbol = self.AddEquity('SPY', Resolution.Minute).Symbol self.vix_symbol:Symbol = self.AddData(QuandlVix, 'CBOE/VIX', Resolution.Daily).Symbol # starts in 2004 self.bms_symbol:Symbol = self.AddData(QuantpediaBMS, 'BMS_GLOBAL', Resolution.Daily).Symbol # starts in 2018 for symbol in [self.spy_symbol, self.vix_symbol, self.bms_symbol]: self.price_data[symbol] = RollingWindow[float](self.period) def OnData(self, data: Slice): # calculate signal from SPY 16 minutes before close if self.spy_symbol in data and data[self.spy_symbol] and self.Time.hour == 15 and self.Time.minute == 44: weight:float = 0. for symbol in [self.spy_symbol, self.vix_symbol, self.bms_symbol]: # trade only sub-strategies with underlying data available if self.Securities[symbol].GetLastData() and (self.Time.date() - self.Securities[symbol].GetLastData().Time.date()).days <= 3: price:float = self.Securities[symbol].GetLastData().Price rolling_window:RollingWindow = self.price_data[symbol] if rolling_window.IsReady and self.GetSignal(price, rolling_window, True if symbol != self.vix_symbol else False): weight += (1 / 3) rolling_window.Add(price) q:int = int((self.Portfolio.TotalPortfolioValue * weight) / data[self.spy_symbol].Value) if q != 0: self.MarketOnCloseOrder(self.spy_symbol, q) self.MarketOnOpenOrder(self.spy_symbol, -q) def GetSignal(self, curr_value:float, rolling_window:RollingWindow, signal_above_sma:bool) -> bool: prices:list[float] = [x for x in rolling_window] moving_average:float = sum(prices) / len(prices) result:bool = False if signal_above_sma and (curr_value > moving_average): result = True elif not signal_above_sma and (curr_value < moving_average): result = True return result # Quantpedia data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaBMS(PythonData): def GetSource(self, config, date, isLiveMode): return SubscriptionDataSource("data.quantpedia.com/backtesting_data/index/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config, line, date, isLiveMode): data:QuantpediaBMS = QuantpediaBMS() data.Symbol = config.Symbol if not line[0].isdigit(): return None split:list = line.split(',') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1) data.Value = float(split[2]) return data class QuandlVix(PythonQuandl): def __init__(self): self.ValueColumnName = "VIX Close"