Overall Statistics |
Total Orders
87
Average Win
13.93%
Average Loss
-4.90%
Compounding Annual Return
4.529%
Drawdown
52.000%
Expectancy
1.590
Start Equity
100000
End Equity
298619.48
Net Profit
198.619%
Sharpe Ratio
0.138
Sortino Ratio
0.13
Probabilistic Sharpe Ratio
0.001%
Loss Rate
33%
Win Rate
67%
Profit-Loss Ratio
2.84
Alpha
-0.011
Beta
0.715
Annual Standard Deviation
0.135
Annual Variance
0.018
Information Ratio
-0.274
Tracking Error
0.086
Treynor Ratio
0.026
Total Fees
$304.18
Estimated Strategy Capacity
$11000000.00
Lowest Capacity Asset
SHY SGNKIKYGE9NP
Portfolio Turnover
0.53%
|
#region imports from AlgorithmImports import * from dateutil.relativedelta import relativedelta #endregion class LastDateHandler(): _last_update_date:Dict[Symbol, datetime.date] = {} @staticmethod def get_last_update_date() -> Dict[Symbol, datetime.date]: return LastDateHandler._last_update_date # Quantpedia monthly custom data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaMonthlyData(PythonData): def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource: return SubscriptionDataSource(f'data.quantpedia.com/backtesting_data/economic/{config.Symbol.Value}.csv', SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData: data = QuantpediaMonthlyData() data.Symbol = config.Symbol if not line[0].isdigit(): return None split: str = line.split(';') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + relativedelta(months=1) data.Value = float(split[1]) if config.Symbol not in LastDateHandler._last_update_date: LastDateHandler._last_update_date[config.Symbol] = datetime(1,1,1).date() if data.Time.date() > LastDateHandler._last_update_date[config.Symbol]: LastDateHandler._last_update_date[config.Symbol] = data.Time.date() return data # Quantpedia bond yield data. # NOTE: IMPORTANT: Data order must be ascending (datewise) class QuantpediaBondYield(PythonData): def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource: return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData: data = QuantpediaBondYield() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(',') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1) data['yield'] = float(split[1]) data.Value = float(split[1]) # store last update date if config.Symbol not in LastDateHandler._last_update_date: LastDateHandler._last_update_date[config.Symbol] = datetime(1,1,1).date() if data.Time.date() > LastDateHandler._last_update_date[config.Symbol]: LastDateHandler._last_update_date[config.Symbol] = data.Time.date() return data class InterestRate3M(PythonData): def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource: return SubscriptionDataSource("data.quantpedia.com/backtesting_data/interbank_rate/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData: data = InterestRate3M() data.Symbol = config.Symbol if not line[0].isdigit(): return None split = line.split(';') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + relativedelta(months=1) data['value'] = float(split[1]) data.Value = float(split[1]) # store last update date if config.Symbol not in LastDateHandler._last_update_date: LastDateHandler._last_update_date[config.Symbol] = datetime(1,1,1).date() if data.Time.date() > LastDateHandler._last_update_date[config.Symbol]: LastDateHandler._last_update_date[config.Symbol] = data.Time.date() return data
# https://quantpedia.com/strategies/fed-model/ # # Each month, the investor conducts a one-month predictive regression (using all available data up to that date) predicting excess stock market # returns using the yield gap as an independent variable. The “Yield gap” is calculated as YG = EY − y, with earnings yield EY ≡ ln (1 ++ E/P) # and y = ln (1 ++ Y) is the log 10 year Treasury bond yield. Then, the strategy allocates 100% in the risky asset if the forecasted excess # returns are positive, and otherwise, it invests 100% in the risk-free rate. from collections import deque from AlgorithmImports import * from typing import List, Tuple, Deque import numpy as np import data_tools from scipy import stats class FEDModel(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.period: int = 12 * 21 self.SetWarmUp(self.period) self.market: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.market_data: Deque[Tuple[float,float]] = deque() self.cash: Symbol = self.AddEquity('SHY', Resolution.Daily).Symbol # risk free rate self.risk_free_rate: Symbol = self.AddData(data_tools.InterestRate3M, 'IR3TIB01USM156N', Resolution.Daily).Symbol # 10Y bond yield symbol self.bond_yield: Symbol = self.AddData(data_tools.QuantpediaBondYield, 'US10YT', Resolution.Daily).Symbol # SP500 earnings yield data self.sp_earnings_yield: Symbol = self.AddData(data_tools.QuantpediaMonthlyData, 'SP500_EARNINGS_YIELD_MONTH', Resolution.Daily).Symbol self.yield_gap: Deque[float] = deque() self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.recent_month: int = -1 self.settings.daily_precise_end_time = False def OnData(self, data: Slice) -> None: custom_data_last_update_date: Dict[Symbol, datetime.date] = data_tools.LastDateHandler.get_last_update_date() rebalance_flag: bool = False if self.sp_earnings_yield in data and data[self.sp_earnings_yield]: if self.Time.month != self.recent_month: self.recent_month = self.Time.month rebalance_flag = True if not rebalance_flag: # earnings yield data is no longer comming in if self.Securities[self.sp_earnings_yield].GetLastData(): if self.Time.date() > custom_data_last_update_date[self.sp_earnings_yield]: self.Liquidate() return # update market price data if self.market in data and self.bond_yield in data and data[self.market] and data[self.bond_yield]: if self.Securities[self.risk_free_rate].GetLastData() and self.Securities[self.bond_yield].GetLastData() and \ self.Time.date() <= custom_data_last_update_date[self.risk_free_rate] and self.Time.date() <= custom_data_last_update_date[self.bond_yield]: market_price: float = data[self.market].Value rf_rate: float = self.Securities[self.risk_free_rate].Price / 100 bond_yield: float = data[self.bond_yield].Value / 100 sp_ey: float = data[self.sp_earnings_yield].Value / 100 if market_price != 0 and rf_rate != 0 and bond_yield != 0 and sp_ey != 0: self.market_data.append((market_price, rf_rate)) yield_gap: float = np.log(sp_ey) - np.log(bond_yield) self.yield_gap.append(yield_gap) rebalance_flag = True # ensure minimum data points to calculate regression min_count: int = 6 if len(self.market_data) >= min_count: market_closes: np.ndarray = np.array([x[0] for x in self.market_data]) market_returns: np.ndarray = (market_closes[1:] - market_closes[:-1]) / market_closes[:-1] rf_rates: np.ndarray = np.array([x[1] for x in self.market_data][1:]) excess_returns: np.ndarray = market_returns - rf_rates yield_gaps: List[float] = list(self.yield_gap) # linear regression # Y = α + (β ∗ X) # intercept = alpha # slope = beta beta, alpha, r_value, p_value, std_err = stats.linregress(yield_gaps[1:-1], market_returns[1:]) # predicted market return Y: float = alpha + (beta * yield_gaps[-1]) # trade execution / rebalance if Y > 0: if self.Portfolio[self.cash].Invested: self.Liquidate(self.cash) self.SetHoldings(self.market, 1) else: if self.Portfolio[self.market].Invested: self.Liquidate(self.market) self.SetHoldings(self.cash, 1)