Overall Statistics |
Total Orders
847
Average Win
1.27%
Average Loss
-0.42%
Compounding Annual Return
4.760%
Drawdown
26.100%
Expectancy
0.616
Start Equity
1000000
End Equity
1986890.71
Net Profit
98.689%
Sharpe Ratio
0.242
Sortino Ratio
0.184
Probabilistic Sharpe Ratio
0.564%
Loss Rate
60%
Win Rate
40%
Profit-Loss Ratio
3.02
Alpha
-0.02
Beta
0.453
Annual Standard Deviation
0.08
Annual Variance
0.006
Information Ratio
-0.747
Tracking Error
0.091
Treynor Ratio
0.043
Total Fees
$5.29
Estimated Strategy Capacity
$960000000.00
Lowest Capacity Asset
SPX 32L3DOVXQZA0E|SPX 31
Portfolio Turnover
0.07%
|
# https://quantpedia.com/strategies/dispersion-trading/ # # The investment universe consists of stocks from the S&P 100 index. Trading vehicles are options on stocks from this index and also options on the index itself. The investor uses analyst forecasts of earnings per share # from the Institutional Brokers Estimate System (I/B/E/S) database and computes for each firm the mean absolute difference scaled by an indicator of earnings uncertainty (see page 24 in the source academic paper for # detailed methodology). Each month, investor sorts stocks into quintiles based on the size of belief disagreement. He buys puts of stocks with the highest belief disagreement and sells the index puts with Black-Scholes # deltas ranging from -0.8 to -0.2. # # QC Implementation changes: # - Due to lack of data, strategy only buys puts of 100 liquid US stocks and sells the SPX index puts. #region imports from AlgorithmImports import * from numpy import floor #endregion class DispersionTrading(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetCash(1000000) self.min_expiry:int = 20 self.max_expiry:int = 60 self.leverage:int = 5 self.min_share_price:int = 5 self.buying_power_model:int = 2 self.index_symbol:Symbol = self.AddIndex('SPX').Symbol self.percentage_traded:float = 1.0 self.selected_symbols:List[Symbol] = [] self.subscribed_contracts = {} self.fundamental_sorting_key = lambda x: x.DollarVolume self.fundamental_count:int = 100 self.Settings.MinimumOrderMarginPortfolioPercentage = 0. self.settings.daily_precise_end_time = False self.UniverseSettings.Resolution = Resolution.Minute self.AddUniverse(self.FundamentalSelectionFunction) self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw)) self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: # rebalance on SPX contract expiration (should be on monthly basis) if len(self.selected_symbols) != 0: return Universe.Unchanged # select top n stocks by dollar volume selected:List[Fundamental] = [ x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.Price > self.min_share_price ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] self.selected_symbols = [x.Symbol for x in selected] return self.selected_symbols def OnData(self, data: Slice) -> None: # liquidate portfolio, when SPX contract is about to expire in 2 days if self.index_symbol in self.subscribed_contracts and self.subscribed_contracts[self.index_symbol].ID.Date.date() - timedelta(2) <= self.Time.date(): self.subscribed_contracts.clear() # perform new subscribtion self.selected_symbols.clear() # perform new selection self.Liquidate() if len(self.subscribed_contracts) == 0: if self.Portfolio.Invested: self.Liquidate() # NOTE order is important, index should come first for symbol in [self.index_symbol] + self.selected_symbols: # subscribe to contract contracts:List[Symbol] = self.OptionChainProvider.GetOptionContractList(symbol, self.Time) # get current price for stock underlying_price:float = self.Securities[symbol].Price # get strikes from stock contracts strikes:List[float] = [i.ID.StrikePrice for i in contracts] # check if there is at least one strike if len(strikes) <= 0: continue # at the money atm_strike:float = min(strikes, key=lambda x: abs(x-underlying_price)) # filtred contracts based on option rights and strikes atm_puts:List[Symbol] = [i for i in contracts if i.ID.OptionRight == OptionRight.Put and i.ID.StrikePrice == atm_strike and self.min_expiry <= (i.ID.Date - self.Time).days <= self.max_expiry] # index contract is found if symbol == self.index_symbol and len(atm_puts) == 0: # cancel whole selection since index contract was not found return # make sure there are enough contracts if len(atm_puts) > 0: # sort by expiry atm_put:List[Symbol] = sorted(atm_puts, key = lambda item: item.ID.Date, reverse=True)[0] # add contract option = self.AddOptionContract(atm_put, Resolution.Minute) option.PriceModel = OptionPriceModels.CrankNicolsonFD() option.SetDataNormalizationMode(DataNormalizationMode.Raw) # store subscribed atm put contract self.subscribed_contracts[symbol] = atm_put # perform trade, when spx and stocks contracts are selected if not self.Portfolio.Invested and len(self.subscribed_contracts) != 0 and self.index_symbol in self.subscribed_contracts: index_option_contract = self.subscribed_contracts[self.index_symbol] # make sure subscribed SPX contract has data if self.Securities.ContainsKey(index_option_contract): if self.Securities[index_option_contract].Price != 0 and self.Securities[index_option_contract].IsTradable: # sell SPX ATM put contract self.Securities[index_option_contract].MarginModel = BuyingPowerModel(self.buying_power_model) price:float = self.Securities[self.index_symbol].Price if price != 0: q:int = floor((self.Portfolio.TotalPortfolioValue * self.percentage_traded) / (price*100)) self.Sell(index_option_contract, q) # buy stock's ATM put contracts long_count:int = len(self.subscribed_contracts) - 1 # minus index symbol for stock_symbol, stock_option_contract in self.subscribed_contracts.items(): if stock_symbol == self.index_symbol: continue if stock_option_contract in data and data[stock_option_contract]: if self.Securities[stock_option_contract].Price != 0 and self.Securities[stock_option_contract].IsTradable: # buy contract self.Securities[stock_option_contract].MarginModel = BuyingPowerModel(self.buying_power_model) if self.Securities.ContainsKey(stock_option_contract): price:float = self.Securities[stock_symbol].Price if price != 0: q:int = floor(((self.Portfolio.TotalPortfolioValue / long_count) * self.percentage_traded) / (price*100)) self.Buy(stock_option_contract, q) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))