Overall Statistics |
Total Orders
21925
Average Win
0.13%
Average Loss
-0.15%
Compounding Annual Return
-0.394%
Drawdown
59.400%
Expectancy
-0.010
Start Equity
100000
End Equity
90625.26
Net Profit
-9.375%
Sharpe Ratio
-0.125
Sortino Ratio
-0.119
Probabilistic Sharpe Ratio
0.000%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.87
Alpha
-0.011
Beta
-0.125
Annual Standard Deviation
0.131
Annual Variance
0.017
Information Ratio
-0.273
Tracking Error
0.221
Treynor Ratio
0.13
Total Fees
$1001.74
Estimated Strategy Capacity
$56000000.00
Lowest Capacity Asset
TD R735QTJ8XC9X
Portfolio Turnover
2.07%
|
# https://quantpedia.com/strategies/residual-momentum-factor/ # # The investment universe consists of all domestic, primary stocks listed on the New York (NYSE), American (AMEX), and NASDAQ # stock markets with a price higher than $1. Closed-end funds, REITs, unit trusts, ADRs, and foreign stocks are removed. The # 10% largest stocks in terms of market capitalization are then selected for trading. # The residual momentum strategy is defined as a zero-investment top-minus-bottom decile portfolio based on ranking stocks # every month on their past 12-month residual returns, excluding the most recent month, standardized by the standard deviation # of the residual returns over the same period. Residual returns are estimated each month for all stocks over the past 36 months # using a regression model. The regression model is calculated every month for all eligible stocks using the Fama and French # three factors as independent variables. The portfolio is equally weighted and rebalanced monthly. # # QC implementation changes: # - Universe consists of 500 most liquid US stock traded on NYSE, AMEX and NASDAQ. import numpy as np from AlgorithmImports import * import statsmodels.api as sm class ResidualMomentumFactor(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) # Monthly price data. self.data:Dict[Symbol, RollingWindow] = {} self.period:int = 37 # Warmup market monthly data. self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.data[self.symbol] = RollingWindow[float](self.period) history = self.History(self.symbol, self.period * 21, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {self.symbol} yet.") else: closes = history.loc[self.symbol].close closes_len = len(closes.keys()) # Find monthly closes. for index, time_close in enumerate(closes.items()): # index out of bounds check. if index + 1 < closes_len: date_month = time_close[0].date().month next_date_month = closes.keys()[index + 1].month # Found last day of month. if date_month != next_date_month: self.data[self.symbol].Add(time_close[1]) # Factors. self.size_factor_symbols:List[Symbol] = [] # Symbol,long_flag tuple. self.size_factor_vector:RollingWindow = RollingWindow[float](self.period - 1) # Monthly performance. self.value_factor_symbols:List[Symbol] = [] self.value_factor_vector:RollingWindow = RollingWindow[float](self.period - 1) # Monthly residual returns for each stock. self.residual_return:Dict[Symbol, RollingWindow] = {} self.residual_momentum_period:int = 12 self.long:List[Symbol] = [] self.short:List[Symbol] = [] self.fundamental_count:int = 500 self.fundamental_sorting_key = lambda x: x.DollarVolume self.factor_quantile:int = 5 self.quantile:int = 10 self.leverage:int = 3 self.last_month:int = -1 self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.settings.daily_precise_end_time = False self.settings.minimum_order_margin_portfolio_percentage = 0. self.schedule.on(self.date_rules.month_start(self.symbol), self.time_rules.after_market_open(self.symbol), self.selection) def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetLeverage(self.leverage) security.SetFeeModel(CustomFeeModel()) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged # Update the rolling window every month. for stock in fundamental: symbol = stock.Symbol # Store monthly market price. if symbol == self.symbol: self.data[self.symbol].Add(stock.AdjustedPrice) else: # Store monthly stock price. if symbol in self.data: self.data[symbol].Add(stock.AdjustedPrice) selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and x.CompanyReference.IsREIT == 0 and \ ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE")) ] if len(selected) > self.fundamental_count: selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]] # Warmup price rolling windows. for stock in selected: symbol:Symbol = stock.Symbol if symbol in self.data: continue self.data[symbol] = RollingWindow[float](self.period) history = self.History(symbol, self.period * 21, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet.") continue closes = history.loc[symbol].close closes_len = len(closes.keys()) # Find monthly closes. for index, time_close in enumerate(closes.items()): # index out of bounds check. if index + 1 < closes_len: date_month = time_close[0].date().month next_date_month = closes.keys()[index + 1].month # Found last day of month. if date_month != next_date_month: self.data[symbol].Add(time_close[1]) selected = [x for x in selected if self.data[x.Symbol].IsReady] if len(selected) == 0: return Universe.Unchanged # Size factor. sorted_by_market_cap:List[Fundamental] = sorted(selected, key=lambda x: x.MarketCap, reverse=True) quantile:int = int(len(sorted_by_market_cap) / self.factor_quantile) size_factor_long:List[Tuple] = [ (i.Symbol, True) for i in sorted_by_market_cap[-quantile:]] size_factor_short:List[Tuple] = [(i.Symbol, False) for i in sorted_by_market_cap[:quantile]] # Calculate last month's performance. if len(self.size_factor_symbols) != 0: monthly_return:float = self.CalculateFactorPerformance(self.data, self.size_factor_symbols) if monthly_return != 0: self.size_factor_vector.Add(monthly_return) # Store new factor symbols. self.size_factor_symbols = size_factor_long + size_factor_short # Value factor. sorted_by_pb:List[Fundamental] = sorted(selected, key = lambda x:(x.ValuationRatios.PBRatio), reverse=False) quantile:int = int(len(sorted_by_pb) / self.factor_quantile) value_factor_long:List[Tuple] = [(i.Symbol, True) for i in sorted_by_pb[:quantile]] value_factor_short:List[Tuple] = [(i.Symbol, False) for i in sorted_by_pb[-quantile:]] # Calculate last month's performance. if len(self.value_factor_symbols) != 0: monthly_return:float = self.CalculateFactorPerformance(self.data, self.value_factor_symbols) if monthly_return != 0: self.value_factor_vector.Add(monthly_return) # Store new factor symbols. self.value_factor_symbols = value_factor_long + value_factor_short # Every factor vector is ready. if self.size_factor_vector.IsReady and self.value_factor_vector.IsReady: # Market factor. if self.symbol in self.data and self.data[self.symbol].IsReady: market_factor_prices:np.ndarray = np.array([x for x in self.data[self.symbol]]) market_factor:np.ndarray = (market_factor_prices[:-1] - market_factor_prices[1:]) / market_factor_prices[1:] if len(market_factor) == (self.period - 1): # Residual return calc. x:List[List[float]] = [ list(market_factor), list(self.size_factor_vector), list(self.value_factor_vector) ] standardized_residual_momentum:Dict[Symbol, float] = {} for stock in sorted_by_market_cap: symbol:Symbol = stock.Symbol monthly_prices:np.ndarray = np.array([x for x in self.data[symbol]]) monthly_returns:np.ndarray = (monthly_prices[:-1] - monthly_prices[1:]) / monthly_prices[1:] regression_model = self.MultipleLinearRegression(x, monthly_returns) alpha:float = regression_model.params[0] if symbol not in self.residual_return: self.residual_return[symbol] = RollingWindow[float](self.residual_momentum_period) self.residual_return[symbol].Add(alpha) # Residual data for 12 months is ready. if self.residual_return[symbol].IsReady: residual_returns:List[float] = [x for x in self.residual_return[symbol]] standardized_residual_momentum[symbol] = sum(residual_returns) / np.std(residual_returns) sorted_by_resid_momentum:List[Symbol] = sorted(standardized_residual_momentum, key=standardized_residual_momentum.get , reverse=True) quantile:int = int(len(sorted_by_resid_momentum) / self.quantile) self.long = sorted_by_resid_momentum[:quantile] self.short = sorted_by_resid_momentum[-quantile:] return self.long + self.short def OnData(self, data: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution. targets:List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long, self.short]): for symbol in portfolio: if symbol in data and data[symbol]: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long.clear() self.short.clear() def CalculateFactorPerformance(self, data, factor_symbols) -> float: monthly_return = 0 if len(factor_symbols) != 0: for symbol, long_flag in factor_symbols: if symbol in data and data[symbol].Count >= 2: closes = [x for x in data[symbol]] if long_flag: monthly_return += ((closes[0] / closes[1] - 1) / len(factor_symbols)) else: monthly_return -= ((closes[0] / closes[1] - 1) / len(factor_symbols)) return monthly_return def MultipleLinearRegression(self, x, y): x = np.array(x).T x = sm.add_constant(x) result = sm.OLS(endog=y, exog=x).fit() return result def selection(self) -> None: self.selection_flag = True # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))