Overall Statistics |
Total Orders
665
Average Win
0.76%
Average Loss
-2.16%
Compounding Annual Return
6.234%
Drawdown
47.900%
Expectancy
0.186
Start Equity
100000
End Equity
451808.27
Net Profit
351.808%
Sharpe Ratio
0.248
Sortino Ratio
0.233
Probabilistic Sharpe Ratio
0.051%
Loss Rate
12%
Win Rate
88%
Profit-Loss Ratio
0.35
Alpha
0.004
Beta
0.504
Annual Standard Deviation
0.106
Annual Variance
0.011
Information Ratio
-0.168
Tracking Error
0.105
Treynor Ratio
0.052
Total Fees
$1770.86
Estimated Strategy Capacity
$8000000.00
Lowest Capacity Asset
VNQ T2FCD04TATET
Portfolio Turnover
0.50%
|
# https://quantpedia.com/strategies/asset-class-momentum-rotational-system/ # # Use 5 ETFs (SPY - US stocks, EFA - foreign stocks, IEF - bonds, VNQ - REITs, GSG - commodities). # Pick 3 ETFs with strongest 12 month momentum into your portfolio and weight them equally. # Hold for 1 month and then rebalance. #region imports from AlgorithmImports import * #endregion class MomentumAssetAllocationStrategy(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) self.data:dict[str, RateOfChange] = {} period:int = 12 * 21 self.SetWarmUp(period, Resolution.Daily) self.traded_count:int = 3 self.symbols:List[str] = ["SPY", "EFA", "IEF", "VNQ", "GSG"] for symbol in self.symbols: self.AddEquity(symbol, Resolution.Minute) self.data[symbol] = self.ROC(symbol, period, Resolution.Daily) self.recent_month:int = -1 def OnData(self, data): if self.IsWarmingUp: return if not (self.Time.hour == 9 and self.Time.minute == 31): return self.Log(f"Market Open Time: {self.Time}") # rebalance once a month if self.Time.month == self.recent_month: return self.recent_month = self.Time.month self.Log(f"New monthly rebalance...") # debug/log info selected:dict[str, RateOfChange] = {} for symbol, roc in self.data.items(): data_ready:bool = bool(symbol in data and data[symbol]) roc_ready:bool = bool(roc.IsReady) self.Log(f"Data for {symbol} are present: {data_ready}") self.Log(f"ROC for {symbol} IsReady: {roc_ready}") if data_ready and roc_ready: selected[symbol] = roc sorted_by_momentum:List = sorted(selected.items(), key = lambda x: x[1].Current.Value, reverse = True) # sorted_by_momentum = sorted([x for x in self.data.items() if x[1].IsReady and x[0] in data and data[x[0]]], key = lambda x: x[1].Current.Value, reverse = True) self.Log(f"Number of assets to sort: {len(sorted_by_momentum)}; at least {self.traded_count} needed.") long:List[str] = [] if len(sorted_by_momentum) >= self.traded_count: long = [x[0] for x in sorted_by_momentum][:self.traded_count] invested:List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested] for symbol in invested: if symbol not in long: self.Liquidate(symbol) self.Log(f"Selected long leg for next month: {long}") for symbol in long: self.SetHoldings(symbol, 1 / len(long))