Overall Statistics |
Total Orders 396 Average Win 3.38% Average Loss -2.84% Compounding Annual Return 63.709% Drawdown 38.900% Expectancy 0.212 Net Profit 168.370% Sharpe Ratio 1.251 Sortino Ratio 1.614 Probabilistic Sharpe Ratio 53.060% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.19 Alpha 0.495 Beta 0.05 Annual Standard Deviation 0.402 Annual Variance 0.162 Information Ratio 0.736 Tracking Error 0.449 Treynor Ratio 10.07 Total Fees $0.00 Estimated Strategy Capacity $270000.00 Lowest Capacity Asset BTCUSD E3 Portfolio Turnover 53.60% |
#region imports using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Globalization; using System.Drawing; using QuantConnect; using System.Text.RegularExpressions; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Selection; using QuantConnect.Parameters; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Util; using QuantConnect.Interfaces; using QuantConnect.Algorithm; using QuantConnect.Indicators; using QuantConnect.Data; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.DataSource; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.Slippage; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Future; using QuantConnect.Securities.Option; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.Interfaces; using QuantConnect.Storage; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion using QuantConnect.DataSource; namespace QuantConnect.Algorithm.CSharp { public class BlockchainBitcoinMetadataAlgorithm : QCAlgorithm { private Symbol _bitcoinMetadataSymbol; private Symbol _btcSymbol; private decimal? _lastDemandSupply = null; public override void Initialize() { SetStartDate(2019, 1, 1); //Set Start Date SetEndDate(2020, 12, 31); //Set End Date SetCash(100000); _btcSymbol = AddCrypto("BTCUSD", Resolution.Minute, Market.Bitfinex).Symbol; // Requesting data _bitcoinMetadataSymbol = AddData<BitcoinMetadata>(_btcSymbol).Symbol; // Historical data var history = History(new[]{_bitcoinMetadataSymbol}, 60, Resolution.Daily); Debug($"We got {history.Count()} items from our history request for {_btcSymbol} Blockchain Bitcoin Metadata"); } public override void OnData(Slice slice) { // Get data var data = slice.Get<BitcoinMetadata>(); if (!data.IsNullOrEmpty()) { var currentDemandSupply = data[_bitcoinMetadataSymbol].NumberofTransactions / data[_bitcoinMetadataSymbol].HashRate; // comparing the average transaction-to-hash-rate ratio changes, we will buy bitcoin or hold cash if (_lastDemandSupply != null && currentDemandSupply > _lastDemandSupply) { SetHoldings(_btcSymbol, 1); } else { SetHoldings(_btcSymbol, 0); } _lastDemandSupply = currentDemandSupply; } } } }